Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = (1 - \(\frac{1}{2}\)) x (1 - \(\frac{1}{3}\)) x (1 - \(\frac{1}{4}\)) x (1 - \(\frac{1}{5}\)) x ... x (1 - \(\frac{1}{2014}\)) x (1 - \(\frac{1}{2015}\))
A = \(\frac{1}{2}\)x \(\frac{2}{3}\) x \(\frac{3}{4}\) x \(\frac{4}{5}\) x ... x \(\frac{2013}{2014}\)x \(\frac{2014}{2015}\)
A = \(\frac{1x2x3x4x...x2013x2014}{2x3x4x5x...x2014x2015}\)
A = \(\frac{1}{2015}\)
Vậy A = \(\frac{1}{2015}\)
~~~
\(\frac{2015\cdot2017-1}{2014+2015\cdot2016}\)\(\cdot\frac{2}{3}\)
\(=\frac{2015\cdot\left(2016+1\right)-1}{2014+2015\cdot2016}\cdot\frac{2}{3}\)
\(=\frac{2015\cdot2016+\left(2015-1\right)}{2014+2015\cdot2016}\cdot\frac{2}{3}\)
\(=\frac{2015\cdot2016+2014}{2014+2015\cdot2016}\cdot\frac{2}{3}\)
\(=1\cdot\frac{2}{3}\)
\(=\frac{2}{3}\)
Xét tử: \(2015+\frac{2014}{2}+\frac{2013}{3}+...+\frac{1}{2015}\)
\(=\left(1+1+...+1\right)+\frac{2014}{2}+\frac{2013}{3}+...+\frac{1}{2015}\)( trong ngoặc có 2015 số 1 )
\(=\left(1+\frac{2014}{2}\right)+\left(1+\frac{2013}{3}\right)+...+\left(1+\frac{1}{2015}\right)+1\)
\(=\frac{2016}{2}+\frac{2016}{3}+\frac{2016}{4}+...+\frac{2016}{2015}+\frac{2016}{2016}\)
\(=2016\cdot\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}\right)\)
Ghép tử và mẫu \(\frac{2016\cdot\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}}=2016\)
Vậy \(A=2016\)
a/
\(\dfrac{4}{15}=1-\dfrac{11}{15}\)
\(\dfrac{5}{16}=1-\dfrac{11}{16}\)
\(\dfrac{11}{15}>\dfrac{11}{16}\Rightarrow1-\dfrac{11}{15}< 1-\dfrac{11}{16}\Rightarrow\dfrac{4}{15}< \dfrac{5}{16}\)
b/
\(\dfrac{2}{113}=\dfrac{4}{226}< \dfrac{4}{115}\)
c/ \(\dfrac{2}{7}=\dfrac{4}{14}< \dfrac{4}{9}\)
d/ \(\dfrac{2}{5}=\dfrac{4}{10}< \dfrac{4}{7}\)
a,\(\dfrac{4}{15}< \dfrac{5}{16}\)
b,\(\dfrac{2}{113}< \dfrac{4}{115}\)
c,\(\dfrac{2}{7}< \dfrac{4}{9}\)
d,\(\dfrac{4}{7}>\dfrac{2}{5}\)