Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\dfrac{54-34}{189-119}=\dfrac{20}{70}=\dfrac{2}{7}\)
b: \(=\dfrac{6+6\cdot4+6\cdot49}{15+15\cdot4+15\cdot49}=\dfrac{6}{15}=\dfrac{2}{5}\)
c: \(=\dfrac{13\left(3-18\right)}{40\left(15-2\right)}=\dfrac{-15}{40}=-\dfrac{3}{8}\)
\(\left\{{}\begin{matrix}\dfrac{a+b}{6}=\dfrac{b+c}{5}\\\dfrac{a+b}{6}=\dfrac{c+a}{7}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=\dfrac{a}{2}\\c=\dfrac{3a}{4}\end{matrix}\right.\)
\(cosA=\dfrac{b^2+c^2-a^2}{2bc}=\dfrac{\dfrac{a^2}{4}+\dfrac{9a^2}{16}-a^2}{2.\dfrac{a}{2}.\dfrac{3a}{4}}=-\dfrac{1}{4}\)
\(cosB=\dfrac{a^2+c^2-b^2}{2ac}=\dfrac{a^2+\dfrac{9a^2}{16}-\dfrac{a^2}{4}}{2a.\dfrac{3a}{4}}=\dfrac{7}{8}\)
\(cosC=\dfrac{a^2+b^2-c^2}{2ab}=\dfrac{11}{16}\)
\(P=-\dfrac{1}{4}+\dfrac{14}{8}+\dfrac{44}{16}=\dfrac{17}{4}\)
\(c17;f\left(x\right)=x^2-\left(m+2\right)x+4m+1\)
\(\Leftrightarrow\Delta>0\Leftrightarrow\left(m+2\right)^2-4\left(4m+1\right)=m^2-12m>0\Leftrightarrow\left[{}\begin{matrix}m< 0\\m>12\end{matrix}\right.\)
\(c18:\)\(x^2-2\left(m+1\right)x+m^2+3< 0\)
\(\Leftrightarrow\Delta'\le0\Leftrightarrow\left(m+1\right)^2-m^2-3\le0\Leftrightarrow m\le1\)
\(c19:\Leftrightarrow\Delta'\ge0\Leftrightarrow m^2-1\ge0\Leftrightarrow m^2\ge1\Leftrightarrow\left|m\right|\ge1\)
Ta có:
Tập hợp A:
\(A=\left\{1;5;9;13;17;21;25\right\}\)
Tập hợp B:
\(B=\left\{0;1;3;5;10;13\right\}\)
Mà: \(A\cap B\)
\(\Rightarrow A\cap B=\left\{1;5;13\right\}\)
⇒ Chọn B
\(x^3=3+2\sqrt{2}+3-2\sqrt{2}+3\cdot\sqrt[3]{\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)}\left(\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\right)\\ \Leftrightarrow x^3=6+3x\sqrt[3]{1}\\ \Leftrightarrow x^3-3x=6\)
\(y^3=17+12\sqrt{2}+17-12\sqrt{2}+3\sqrt[3]{\left(17-12\sqrt{2}\right)\left(17+12\sqrt{2}\right)}\left(\sqrt[3]{17-12\sqrt{2}}+\sqrt[3]{17+12\sqrt{2}}\right)\\ \Leftrightarrow y^3=34+3x\sqrt[3]{1}\\ \Leftrightarrow y^3-3y=34\)
Thay vào P, ta được
\(P=x^3+y^3-3x-3y+1979\\ P=\left(x^3-3x\right)+\left(y^3-3y\right)+1979\\ P=6+34+1979=2019\)
\(x^3=6+3\sqrt[3]{\left(3+2\sqrt[]{2}\right)\left(3-2\sqrt[]{2}\right)}\left(\sqrt[3]{3+2\sqrt[]{2}}+\sqrt[3]{3-2\sqrt[]{2}}\right)\)
\(\Rightarrow x^3=6+3x\)
\(\Rightarrow x^3-3x=6\)
Tương tự:
\(y^3=34+3\sqrt[3]{\left(17+12\sqrt[]{2}\right)\left(17-12\sqrt[]{2}\right)}\left(\sqrt[3]{17+12\sqrt[]{2}}+\sqrt[3]{17-12\sqrt[]{2}}\right)\)
\(\Rightarrow y^3=34+3y\)
\(\Rightarrow y^3-3y=34\)
Do đó:
\(P=\left(x^3-3x\right)+\left(y^3-3y\right)+1979=6+34+1979=...\)
\(tanb-4cotb=3\)
=>\(tanb-\dfrac{4}{tanb}=3\)
=>\(tan^2b-4=3tanb\)
=>(tanb-4)(tanb+1)=0
=>tan b=-1 hoặc tan b=4
0<=b<=90
=>tan b ko thể bằng -1 được
=>tan b=4
1+tan^2b=1/cos^2b
=>1/cos^2b=17
=>cosb=1/căn 17
=>sin b=4/căn 17
\(P=\left(\dfrac{1}{\sqrt{17}}+\dfrac{4}{\sqrt{17}}\right)\cdot\sqrt{17}=5\)
Ta có:
$p^2=5q^2+4$ chia 5 dư 4 suy ra $p=5k+2(k\in \mathbb{N}^*)$
Ta có:
$(5k+2)^2=5q^2+4\Leftrightarrow 5k^2+4k=q^2\Rightarrow q^2\vdots k$
Mặt khác q là số nguyên tố và $q>k$ nên $k=1$. Thay vào ta được $p=7,q=3$
Bấm mt