K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(=\dfrac{54-34}{189-119}=\dfrac{20}{70}=\dfrac{2}{7}\)

b: \(=\dfrac{6+6\cdot4+6\cdot49}{15+15\cdot4+15\cdot49}=\dfrac{6}{15}=\dfrac{2}{5}\)

c: \(=\dfrac{13\left(3-18\right)}{40\left(15-2\right)}=\dfrac{-15}{40}=-\dfrac{3}{8}\)

NV
7 tháng 3 2021

\(\left\{{}\begin{matrix}\dfrac{a+b}{6}=\dfrac{b+c}{5}\\\dfrac{a+b}{6}=\dfrac{c+a}{7}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=\dfrac{a}{2}\\c=\dfrac{3a}{4}\end{matrix}\right.\)

\(cosA=\dfrac{b^2+c^2-a^2}{2bc}=\dfrac{\dfrac{a^2}{4}+\dfrac{9a^2}{16}-a^2}{2.\dfrac{a}{2}.\dfrac{3a}{4}}=-\dfrac{1}{4}\)

\(cosB=\dfrac{a^2+c^2-b^2}{2ac}=\dfrac{a^2+\dfrac{9a^2}{16}-\dfrac{a^2}{4}}{2a.\dfrac{3a}{4}}=\dfrac{7}{8}\)

\(cosC=\dfrac{a^2+b^2-c^2}{2ab}=\dfrac{11}{16}\)

\(P=-\dfrac{1}{4}+\dfrac{14}{8}+\dfrac{44}{16}=\dfrac{17}{4}\)

Câu 17: A

Câu 18: B

Câu 19: A

24 tháng 2 2022

\(c17;f\left(x\right)=x^2-\left(m+2\right)x+4m+1\)

\(\Leftrightarrow\Delta>0\Leftrightarrow\left(m+2\right)^2-4\left(4m+1\right)=m^2-12m>0\Leftrightarrow\left[{}\begin{matrix}m< 0\\m>12\end{matrix}\right.\)

\(c18:\)\(x^2-2\left(m+1\right)x+m^2+3< 0\)

\(\Leftrightarrow\Delta'\le0\Leftrightarrow\left(m+1\right)^2-m^2-3\le0\Leftrightarrow m\le1\)

\(c19:\Leftrightarrow\Delta'\ge0\Leftrightarrow m^2-1\ge0\Leftrightarrow m^2\ge1\Leftrightarrow\left|m\right|\ge1\)

 

17 tháng 8 2023

Ta có:

Tập hợp A:
\(A=\left\{1;5;9;13;17;21;25\right\}\)

Tập hợp B:

\(B=\left\{0;1;3;5;10;13\right\}\)

Mà: \(A\cap B\)

\(\Rightarrow A\cap B=\left\{1;5;13\right\}\)

⇒ Chọn B

17 tháng 10 2020

Bạn muốn tính của gì cơ ?

Mk ko hiểu

17 tháng 10 2020

cô bảo mình điền số tiếp theo vô chỗ ? mà mình tính mãi cũng không ra ...

6 tháng 9 2021

\(x^3=3+2\sqrt{2}+3-2\sqrt{2}+3\cdot\sqrt[3]{\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)}\left(\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\right)\\ \Leftrightarrow x^3=6+3x\sqrt[3]{1}\\ \Leftrightarrow x^3-3x=6\)

\(y^3=17+12\sqrt{2}+17-12\sqrt{2}+3\sqrt[3]{\left(17-12\sqrt{2}\right)\left(17+12\sqrt{2}\right)}\left(\sqrt[3]{17-12\sqrt{2}}+\sqrt[3]{17+12\sqrt{2}}\right)\\ \Leftrightarrow y^3=34+3x\sqrt[3]{1}\\ \Leftrightarrow y^3-3y=34\)

Thay vào P, ta được

\(P=x^3+y^3-3x-3y+1979\\ P=\left(x^3-3x\right)+\left(y^3-3y\right)+1979\\ P=6+34+1979=2019\)

 

NV
6 tháng 9 2021

\(x^3=6+3\sqrt[3]{\left(3+2\sqrt[]{2}\right)\left(3-2\sqrt[]{2}\right)}\left(\sqrt[3]{3+2\sqrt[]{2}}+\sqrt[3]{3-2\sqrt[]{2}}\right)\)

\(\Rightarrow x^3=6+3x\)

\(\Rightarrow x^3-3x=6\)

Tương tự:

\(y^3=34+3\sqrt[3]{\left(17+12\sqrt[]{2}\right)\left(17-12\sqrt[]{2}\right)}\left(\sqrt[3]{17+12\sqrt[]{2}}+\sqrt[3]{17-12\sqrt[]{2}}\right)\)

\(\Rightarrow y^3=34+3y\)

\(\Rightarrow y^3-3y=34\)

Do đó:

\(P=\left(x^3-3x\right)+\left(y^3-3y\right)+1979=6+34+1979=...\)

\(tanb-4cotb=3\)

=>\(tanb-\dfrac{4}{tanb}=3\)

=>\(tan^2b-4=3tanb\)

=>(tanb-4)(tanb+1)=0

=>tan b=-1 hoặc tan b=4

0<=b<=90

=>tan b ko thể bằng -1 được

=>tan b=4

1+tan^2b=1/cos^2b

=>1/cos^2b=17

=>cosb=1/căn 17

=>sin b=4/căn 17

\(P=\left(\dfrac{1}{\sqrt{17}}+\dfrac{4}{\sqrt{17}}\right)\cdot\sqrt{17}=5\)

22 tháng 7 2019

Ta có:

$p^2=5q^2+4$ chia 5 dư 4 suy ra $p=5k+2(k\in \mathbb{N}^*)$

Ta có:

$(5k+2)^2=5q^2+4\Leftrightarrow 5k^2+4k=q^2\Rightarrow q^2\vdots k$

Mặt khác q là số nguyên tố và $q>k$ nên $k=1$. Thay vào ta được $p=7,q=3$

22 tháng 7 2019

Gửi bài trên sai chỗ :D