K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2021

5/2+13/6+25/12+41/20+61/30+85/42

=2+1/2+2+1/6+2+1/12+2+1/20+2+1/30+2+1/42
=12+(1/2+1/6+1/12+1/20+1/30+1/42)

=12+(1/1.2+1/2.3+1/3.4+1/4.5+1/5.6+1/6.7)

=12+(1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7)

=12+1-1/7

=90/7

5/2+13/6+25/12+41/20+61/30+85/42

=2+1/2+2+1/6+2+1/12+2+1/20+2+1/30+2+1/42
=12+(1/2+1/6+1/12+1/20+1/30+1/42)

=12+(1/1.2+1/2.3+1/3.4+1/4.5+1/5.6+1/6.7)

=12+(1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7)

=12+1-1/7

=90/7

a) \(\frac{13}{7}-\frac{1}{2}\times\frac{13}{7}+\frac{3}{2}\times\frac{13}{7}\)

\(=\frac{13}{7}\times\left(1-\frac{1}{2}+\frac{3}{2}\right)\)

\(=\frac{13}{7}\times2\)

\(=\frac{26}{7}\)

b) \(\frac{1}{15}\times\left(\frac{3}{7}+\frac{5}{19}\right)+\frac{3}{7}\times\left(\frac{5}{19}-\frac{1}{15}\right)\)

\(=\frac{1}{15}\times\frac{3}{7}+\frac{1}{15}\times\frac{5}{19}+\frac{3}{7}\times\frac{5}{19}-\frac{3}{7}\times\frac{1}{15}\)

\(=\frac{5}{19}\times\left(\frac{1}{15}+\frac{3}{7}\right)\)

\(=\frac{5}{19}\times\frac{52}{105}\)

\(=\frac{52}{399}\)

c) \(\frac{5}{6}+\frac{5}{12}+\frac{5}{20}+\frac{5}{30}+...+\frac{5}{9900}\)

\(=5\times\left(\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+\frac{1}{5\times6}+...+\frac{1}{99\times100}\right)\)

\(=5\times\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(=5\times\left(\frac{1}{2}-\frac{1}{100}\right)\)

\(=5\times\frac{49}{100}\)

\(=\frac{49}{20}\)

Lần sau nên đăng ít thôi

10 tháng 7 2020

Ta có:

\(A=\frac{3}{2}+\frac{7}{6}+\frac{13}{12}+...+\frac{9901}{9900}\)

\(A=1+\frac{1}{2}+1+\frac{1}{6}+1+\frac{1}{12}+...+1+\frac{1}{9900}\)\(A=1+1+1+...+1(51c/s)+\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{9900}\)

\(A=51+\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)

\(A=51+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=51+1-\frac{1}{100}\)

\(A=52-\frac{1}{100}\)

\(A=\frac{5199}{100}\)

Cái đoạn 1+1+1+...+1 ( 51 c/s) số tớ ko thể giải thích trên máy tính đc nên bn tự suy nghĩ nhé:)))

2 tháng 11

A= 3/2+7/6+...+9901/9900

A=1+1/2+1+1/6+1+1/12+...+1/9900

A=(1+1+1+...+1)+(1/2+1/6+1/12+...+1/9900)

A=(1+1+1+...+1)+(1/1x2+1/2x3+1/3x4+...+1/99x100)

A=(1+1+1+...+1)+(1/1-1/2+1/2-1/3+1/3-1/4+1/4-...-1/99+1/99-1/100)

A=99+(1/1-1/100)

A=99+99/100

A=9999/100

 

A=9900/100+99

14 tháng 12 2019

trước số 1/9900 là số mấy vậy em

11 tháng 4 2016

mk lam dc ma ko ranh ghi

11 tháng 4 2016

ai giup minh voi

27 tháng 3 2020

nhanh nha mình đang cần

28 tháng 3 2020

nhanh nhanh đang cần

28 tháng 3 2020

Đặt \(A=\frac{3}{2}+\frac{3}{6}+\frac{3}{12}+...+\frac{3}{9900}\)

\(=\frac{3}{1\times2}+\frac{3}{2\times3}+\frac{3}{3\times4}+...+\frac{3}{99\times100}\)

\(\Rightarrow A:3=\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{99\times100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}=\frac{99}{100}\)

\(\Rightarrow A=\frac{99}{100}\times3=\frac{297}{100}\)

Vậy \(A=\frac{297}{100}\).

9 tháng 1 2017

1/2 + 1/6 + 1/12 + 1/20 + ... + 1/9900

= 1/1.2 + 1/2.3 + 1/3.4 + 1/4.5 + ... + 1/99.100

= 1 - 1/2 + 1/2 - 1/2 + 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/99 - 1/100

= 1 - 1/100

= 99/100 

Mk nhanh nhất đó

Đúng 100%

Tk mk mk tk lại

Cảm ơn bạn nhiều

Thank you very much

( ^ _ ^ )

9 tháng 1 2017

99/100

Buổi chiều hôm nay cô giáo mới dạy cho mình mà nên mình chắc chắn 100%

19 tháng 8 2023

\(\dfrac{2}{3}\times\dfrac{13}{4}\times\dfrac{3}{2}\times\dfrac{7}{3}\times\dfrac{4}{7}\)

\(\dfrac{2\times13\times3\times7\times4}{3\times4\times2\times3\times7}\)

\(\dfrac{13}{3}\)

\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}\)

=\(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}\)

=\(\dfrac{1}{1}-\dfrac{1}{5}\)

=\(\dfrac{4}{5}\)

 

19 tháng 8 2023

a, (\(\dfrac{41}{25}\) + \(\dfrac{17}{100}\)) + \(\dfrac{39}{25}\)

= (\(\dfrac{41}{25}\) + \(\dfrac{39}{25}\)) + \(\dfrac{17}{100}\) 

\(\dfrac{80}{25}\) + \(\dfrac{17}{100}\)

\(\dfrac{320}{100}\) + \(\dfrac{17}{100}\)

\(\dfrac{337}{100}\)

g, \(\dfrac{1}{12}\) + \(\dfrac{1}{20}\) + \(\dfrac{1}{30}\) + \(\dfrac{1}{42}\)

\(\dfrac{1}{3\times4}+\dfrac{1}{4\times5}+\dfrac{1}{5\times6}+\dfrac{1}{6\times7}\)

\(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}\)

\(\dfrac{1}{3}-\dfrac{1}{7}\)

\(\dfrac{7}{21}-\dfrac{3}{21}\)

\(\dfrac{4}{21}\)

 

12 tháng 8 2016

1/2 + 5/6 + 11/12 + 19/20 + 29/30 +. . . 9701 + / 9702 + 9899/9900 = 1/2 + (1-1 / 6) + (1-1 / 12) + (1-1 / 20) + (1-1 / 30) + ...... + (1 -1/9702) + (1-1 / 9900) = 1/2 + [1 - (1 / 2-1 / 3)] + [1 - (1 / 3-1 / 4)] + [1- ( 1 / 4-1 / 5)] + [1 - (1 / 5-1 / 6)] + ...... + [1- (1 / 98-1 / 99)] + [1 - (1 / 99-1 / 100)] * 100 + 1 = 1 / 2-1 / 2 + 1 / 3-1 / 3 + 1 / 4-1 / 4 + 1 / 5-1 / 5 + 1 / 6-1 / 6 + ... ... 1 / 98-1 / 98 + 1 / 99-1 / 99 + 1/100 + 1 = 100/100 = 100 và 1/100