K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2019

Ở link: Câu hỏi của Thị Kim Vĩnh Bùi - Toán lớp 8 - Học toán với OnlineMath

đã tìm được giá trị của a, b, c, d

Thay vào tìm M nhé!

17 tháng 8 2016

a) \(\frac{a-1}{2}=\frac{b-2}{3}=\frac{c-3}{4}\Leftrightarrow\frac{2a-2}{4}=\frac{3b-6}{9}=\frac{c-3}{4}\)

Áp dụng t/c dãy tỉ số bằng nhau : \(\frac{2a-2}{4}=\frac{3b-6}{9}=\frac{c-3}{4}=\frac{2a+3b-c-2-6+3}{4+9-4}=\frac{45}{9}=5\)

Suy ra : \(\begin{cases}a=11\\b=17\\c=23\end{cases}\)

 

a: Theo đề, ta có: 

\(\dfrac{2a}{3}=\dfrac{b-1}{4}=\dfrac{c-2}{5}\)

\(\Leftrightarrow\dfrac{a}{\dfrac{3}{2}}=\dfrac{b-1}{4}=\dfrac{c-2}{5}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a}{\dfrac{3}{2}}=\dfrac{b-1}{4}=\dfrac{c-2}{5}=\dfrac{a-2b+c+2-2}{\dfrac{3}{2}-2\cdot4+5}=\dfrac{1}{-\dfrac{3}{2}}=-\dfrac{2}{3}\)

Do đó: a=-1; b-1=-8/3; c-2=-10/3

=>a=-1; b=-5/3; c=-4/3

b: Theo đề, ta có:

\(\dfrac{2a}{20}=\dfrac{b-1}{15}=\dfrac{c-2}{12}\)

hay \(\dfrac{a}{10}=\dfrac{b-1}{15}=\dfrac{c-2}{12}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a}{10}=\dfrac{b-1}{15}=\dfrac{c-2}{12}=\dfrac{a-2b+c+2-2}{10-2\cdot15+12}=\dfrac{1}{-8}=\dfrac{-1}{8}\)

Do đó: a=-5/4; b-1=-15/8; c-2=-3/2

=>a=-5/4; b=-7/8; c=1/2

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a-1}{6}=\dfrac{b-2}{4}=\dfrac{c-3}{3}=\dfrac{2a+3b-c-2-6+3}{2\cdot6+3\cdot4-3}=\dfrac{15}{7}\)

Do đó: a-1=90/7; b-2=60/7; c-3=45/7

=>a=97/7; b=74/7; c=66/7

24 tháng 1 2023

Sẵn tiện mk chỉ cho bn luôn dạng này nhé.

Phân tích:

Với \(\alpha,\beta,\gamma>0\) thỏa \(\alpha< 2,\beta< 3,\gamma< 4\) ta có:

\(A=2a+3b+4c+\dfrac{3}{a}+\dfrac{9}{2b}+\dfrac{4}{c}\)

\(=\left[\left(2-\alpha\right)a+\dfrac{3}{a}\right]+\left[\left(3-\beta\right)b+\dfrac{9}{2b}\right]+\left[\left(4-\gamma\right)c+\dfrac{4}{c}\right]+\left(\alpha a+\beta b+\gamma c\right)\)

\(\ge2\sqrt{3.\left(2-\alpha\right)}+2\sqrt{\dfrac{9}{2}.\left(3-\beta\right)}+2\sqrt{4.\left(4-\gamma\right)}+\left(\alpha a+\beta b+\gamma c\right)\)

Chọn \(\alpha,\beta,\gamma\) (thỏa đk trên) sao cho:

\(\left\{{}\begin{matrix}\left(2-\alpha\right)a=\dfrac{3}{a}\\\left(3-\beta\right)b=\dfrac{9}{2b}\\\left(4-\gamma\right)c=\dfrac{4}{c}\\\alpha=\dfrac{\beta}{2}=\dfrac{\gamma}{3}\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}a=\sqrt{\dfrac{3}{2-\alpha}}\\b=\sqrt{\dfrac{9}{2\left(3-\beta\right)}}\\c=\sqrt{\dfrac{4}{\left(4-\gamma\right)}}\\\alpha=\dfrac{\beta}{2}=\dfrac{\gamma}{3}\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}a=\sqrt{\dfrac{3}{2-\alpha}}\\b=\sqrt{\dfrac{9}{6-4\alpha}}\\c=\sqrt{\dfrac{4}{4-3\alpha}}\\\alpha=\dfrac{\beta}{2}=\dfrac{\gamma}{3}\end{matrix}\right.\)

Ta có: \(a+2b+3c\ge20\). Xác định điểm rơi: \(a+2b+3c=20\)

\(\Rightarrow\sqrt{\dfrac{3}{2-\alpha}}+2\sqrt{\dfrac{9}{6-4\alpha}}+3\sqrt{\dfrac{4}{4-3\alpha}}=20\)

Giải ra ta có \(\alpha=\dfrac{5}{4}\Rightarrow\beta=\dfrac{5}{2};\gamma=\dfrac{15}{4}\)

Lời giải:

Ta có: \(A=2a+3b+4c+\dfrac{3}{a}+\dfrac{9}{2b}+\dfrac{4}{c}\)

\(=\left(\dfrac{3a}{4}+\dfrac{3}{a}\right)+\left(\dfrac{b}{2}+\dfrac{9}{2b}\right)+\left(\dfrac{c}{4}+\dfrac{4}{c}\right)+\left(\dfrac{5a}{4}+\dfrac{5b}{2}+\dfrac{15c}{4}\right)\)

\(\ge^{Cauchy}2\sqrt{\dfrac{3a}{4}.\dfrac{3}{a}}+2\sqrt{\dfrac{b}{2}.\dfrac{9}{2b}}+2\sqrt{\dfrac{c}{4}.\dfrac{4}{c}}+\dfrac{5}{4}\left(a+2b+3c\right)\)

\(=3+3+2+\dfrac{5}{4}\left(a+2b+3c\right)\)

\(\ge8+\dfrac{5}{4}.20=33\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\dfrac{3a}{4}=\dfrac{3}{a}\\\dfrac{b}{2}=\dfrac{9}{2b}\\\dfrac{c}{4}=\dfrac{4}{c}\\a+2b+3c=20\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=3\\c=4\end{matrix}\right.\)

Vậy \(MinA=33\), đạt được khi \(a=2;b=3;c=4\)

 

7 tháng 4 2017

Nhầm, cái cuối là \(\frac{4}{4+d+2ad+3abd}\)

25 tháng 3 2020

\(\frac{1}{1+2a+3ab+4abc}+\frac{2}{2+3b+4bc+bcd}+\frac{3}{3+4c+cd+2acd}+\frac{4}{4+d+2ad+3abd}\)

\(\frac{1}{1+2a+3ab+4abc}+\frac{2a}{2a+3ab+4abc+abcd}+\frac{3ab}{3ab+4abc+abcd+2abacd}\)

\(+\frac{4abc}{4abc+abcd+2aabcd+3abcabd}\)

\(\frac{1}{1+2a+3ab+4abc}+\frac{2a}{2a+3ab+4abc+1}+\frac{3ab}{3ab+4abc+1+2a}+\frac{4abc}{4abc+1+2a+3ab}\)

\(\frac{1+2a+3ab+4abc}{1+2a+3ab+4abc}=1\)