Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔBAD có BM là đường trung tuyến
nên \(\overrightarrow{BM}=\dfrac{1}{2}\left(\overrightarrow{BA}+\overrightarrow{BD}\right)\)
\(=\dfrac{1}{2}\left(\overrightarrow{BA}+\dfrac{2}{3}\overrightarrow{BC}\right)\)
\(=\dfrac{1}{2}\left(\overrightarrow{BA}+\dfrac{2}{3}\overrightarrow{BA}+\dfrac{2}{3}\overrightarrow{AC}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{5}{3}\overrightarrow{BA}+\dfrac{2}{3}\overrightarrow{AC}\right)\)
\(=\dfrac{1}{6}\left(5\overrightarrow{BA}+2\overrightarrow{AC}\right)\)
\(=\dfrac{5}{6}\left(\overrightarrow{BA}+\dfrac{2}{5}\overrightarrow{AC}\right)\)
\(\overrightarrow{BN}=\overrightarrow{BA}+\overrightarrow{AN}\)
\(=\overrightarrow{BA}+\dfrac{2}{5}\overrightarrow{BC}\)
=>\(\overrightarrow{BM}=\dfrac{5}{6}\cdot\overrightarrow{BN}\)
=>B,M,N thẳng hàng
Từ D vẽ đường thẳng song song với AC cắt BC tại F
Ta có: \(\bigtriangleup\)ABC cân tại A \(\Rightarrow\) \(\widehat{ABC}=\widehat{ACB}\) (1)
DF//AC \(\Rightarrow\) DF//EC \(\Rightarrow\) \(\begin{cases} \widehat{ACB}=\widehat{DFB}(2)\\ \widehat{FDI}=\widehat{IEC}(3) \end{cases}\)
Từ (1);(2) \(\Rightarrow\) \(\widehat{ABC}=\widehat{DFB}\)
\(\Rightarrow\) \(\bigtriangleup\)DFB cân tại D
\(\Rightarrow\) BD=DF.
Mà BD=CE(gt) \(\Rightarrow\) CE=DF.
Xét \(\bigtriangleup\)FDI và \(\bigtriangleup\)CEI có:
DF=CE(cmt)
\(\widehat{FDI}=\widehat{IEC}\) (cmt)
DI=IE(I là trung điểm DE)
\(\Rightarrow\) \(\bigtriangleup\)FDI = \(\bigtriangleup\)CEI (c-g-c)
\(\Rightarrow\) \(\widehat{FID}=\widehat{EIC}\)
Ta có: \(\widehat{DIC}+\widehat{CIE}\) = 180o
Mà \(\widehat{FID}=\widehat{EIC}\) (cmt)
\(\Rightarrow\) \(\widehat{DIC}+\widehat{DIF}\) = 180o
\(\Rightarrow\) \(\widehat{FIC}=180^{0}\)
Hay \(\widehat{BIC}=180^{0}\)
\(\Rightarrow\) 3 điểm B,I,C thẳng hàng (đpcm)
Kẻ DH song song với AC (H thuộc BC)
Xét tam giác DBH. Ta có Góc BDH = góc BAC. B là góc chung => góc DHB = góc ACB. góc B = ACB (Tam giác ABC cân) => tam giác BDH cân lại D => DB = DH.
Xét 2 tam giác DHI và tam giác ECI
Ta có:
Góc HDI = góc IEC ( vị trí so le trong của DH và AC)
DH = CE ( cùng bằng DB)
DI = IE (gt)
=> 2 tam giác bằng nhau c.g.c
=> Góc DIB = Góc EIC
mà 2 góc này ở vị trí đối đỉnh => Thằng hàng.
(hoặc góc EIC + CID = 180 => DIB + CID = 180 độ => BIC là góc bẹt )
Xét ΔBAD có BI là đường trung tuyến
nên \(\overrightarrow{BI}=\dfrac{1}{2}\left(\overrightarrow{BA}+\overrightarrow{BD}\right)\)
=>\(\overrightarrow{BI}=\dfrac{1}{2}\left(\overrightarrow{BA}+\dfrac{2}{3}\overrightarrow{BC}\right)\)
\(=\dfrac{1}{2}\left(\overrightarrow{BA}+\dfrac{2}{3}\overrightarrow{BA}+\dfrac{2}{3}\overrightarrow{AC}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{5}{3}\overrightarrow{BA}+\dfrac{2}{3}\overrightarrow{AC}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{1}{3}\left(5\overrightarrow{BA}+2\overrightarrow{AC}\right)=\dfrac{1}{6}\left(5\overrightarrow{BA}+2\overrightarrow{AC}\right)=\dfrac{5}{6}\left(\overrightarrow{BA}+\dfrac{2}{5}\overrightarrow{AC}\right)\)
\(\overrightarrow{BM}=\overrightarrow{BA}+\overrightarrow{AM}\)
\(=\overrightarrow{BA}+\dfrac{2}{5}\overrightarrow{AC}\)
=>\(\overrightarrow{BI}=\dfrac{5}{6}\cdot\overrightarrow{BM}\)
=>B,I,M thẳng hàng
Cách 1: Dùng định lý Menelaus đảo:
Từ đề bài, ta có \(\dfrac{BD}{BC}=\dfrac{2}{3}\), \(\dfrac{MC}{MA}=\dfrac{3}{2}\), \(\dfrac{IA}{ID}=1\)
\(\Rightarrow\dfrac{BD}{BC}.\dfrac{MC}{MA}.\dfrac{IA}{ID}=1\)
Theo định lý Menelaus đảo, suy ra B, I, M thẳng hàng.
Cách 2: Dùng vector
Ta có \(\overrightarrow{BI}=\dfrac{1}{2}\left(\overrightarrow{BA}+\overrightarrow{BD}\right)\)
\(=\dfrac{1}{2}\overrightarrow{BA}+\dfrac{1}{2}.\dfrac{2}{3}\overrightarrow{BC}\)
\(=\dfrac{1}{2}\overrightarrow{BA}+\dfrac{1}{3}\overrightarrow{BC}\)
\(=\dfrac{1}{6}\left(3\overrightarrow{BA}+2\overrightarrow{BC}\right)\)
Lại có \(\overrightarrow{BM}=\dfrac{MC}{AC}\overrightarrow{BA}+\dfrac{MA}{AC}\overrightarrow{BC}\)
\(=\dfrac{3}{5}\overrightarrow{BA}+\dfrac{2}{5}\overrightarrow{BC}\)
\(=\dfrac{1}{5}\left(3\overrightarrow{BA}+2\overrightarrow{BC}\right)\)
\(=\dfrac{6}{5}.\dfrac{1}{6}\left(3\overrightarrow{BA}+2\overrightarrow{BC}\right)\)
\(=\dfrac{6}{5}\overrightarrow{BI}\)
Vậy \(\overrightarrow{BM}=\dfrac{6}{5}\overrightarrow{BI}\), suy ra B, I, M thẳng hàng.
1). Vì MP là đường kính suy ra P N ⊥ M N (1).
Vì MD là đường kính suy ra D N ⊥ M N (2).
Từ (1) và (2), suy ra N; P; D thẳng hàng.
Bạn đùa tôi à