Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
*Xét n=1
=> 37n+1 chia hết cho 1
*Xét n>1
=> 37n+1 không chia hết cho n
Vậy BCNN (n;37n+1) = n(37n+1)= 37n2 + . với mọi n > 0
-> a : 9 = 3
= 3 × 9
= 27
-> a : 27 = 12
= 12 × 27
= 324
-> a : 41 = 27
= 27 × 41
= 1107
HT
-> a : 9 = 3
= 3 × 9
= 27
-> a : 27 = 12
= 12 × 27
= 324
-> a : 41 = 27
= 27 × 41
= 1107
Mình cũng không biết mình đúng hem nha!!!
Mình biết gì thì chỉ đó à! Sẽ có bạn khác chỉ cho bạn đáp án đúng nhất!!
CHÚC BẠN HỌC TỐT!!!
a chia 9 dư 3 , hay (a+6) ⋮ 9 hay (a+6+90) ⋮ 9 (Tính chất chia hết của 1 tổng) hay (a+96) ⋮ 9.
a chia 27 dư 12 , hay (a+15) ⋮ 27 hay (a+15+81) ⋮ 27 (Tính chất chia hết của 1 tổng) hay (a+96) ⋮ 27.
a chia 41 dư 27 , hay (a+14) ⋮ 41 hay (a+14+82) ⋮ 41 (Tính chất chia hết của 1 tổng) hay (a+96) ⋮ 41.
Suy ra : (a+96) ⋮ 9;27 và 41 hay (a+96) ϵ BC(9,27,41).
9 = 32 ; 27 =33 ; 41 = 41.
BCNN(9,27,41) = 33.41=1107.
BC(9,27,41) = { 0;1107;2214;... }
Vì a nhỏ nhất nên a+96 cũng nhỏ nhất nên a + 96 = 1107. (a+96=0 thì a=0-96 -> vô lý -> loại)
a + 96 = 1107
a = 1107 - 96
a = 1101.
Vạy a= 1101.
gọi số đó là a, ta có
a : 5 , 6 , 7 đều dư 1
= ( a- 1 ) chia hết 5,6,7
vì a là số nhỏ nhất nên a- 1 = 5,6,7
a-1 = 210
a = 210+1
a = 211
Answer:
a) Ta đặt \(a=\left(n;37n+1\right)\) \(\left(a\inℕ^∗\right)\)
Ta có: n chia hết cho a
=> 37n chia hết cho a
=> 37n + 1 chia hết cho a
Do vậy: (37n + 1) - 37n chia hết cho a
=> 1 chia hết cho a
=> a là ước của 1
=> a = 1
=> 37n + 1 và n là hai số nguyên tố cùng nhau
\(\Rightarrow BCNN\left(n;37n+1\right)=\left(37n+1\right)n=37n^2+n\)