Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1
Từ giả thiết, bình phương 2 vế, ta được:
\(x^2y^2+\left(x^2+1\right)\left(y^2+1\right)+2xy\sqrt{x^2+1}\sqrt{y^2+1}=2015\)
\(\Leftrightarrow2x^2y^2+x^2+y^2+2xy\sqrt{x^2+1}\sqrt{y^2+1}=2014.\)
\(A^2=x^2\left(y^2+1\right)+y^2\left(x^2+1\right)+2x\sqrt{y^2+1}.y\sqrt{x^2+1}\)
\(=2x^2y^2+x^2+y^2+2xy\sqrt{x^2+1}.\sqrt{y^2+1}\)
\(=2014\)
\(\Rightarrow A=\sqrt{2014}.\)
Bài 2:
Đặt \(\sqrt{2015}=a>0\)
\(\left(x+\sqrt{x^2+a}\right)\left(y+\sqrt{y^2+a}\right)=a\text{ }\left(1\right)\)
Do \(\sqrt{y^2+a}-y>\sqrt{y^2}-y=\left|y\right|-y\ge0\) nên ta nhân cả 2 vế với \(\sqrt{y^2+a}-y\)
\(\left(1\right)\Leftrightarrow\left(x+\sqrt{x^2+a}\right)\left[\left(y^2+a\right)-y^2\right]=a.\left(\sqrt{y^2+a}-y\right)\)
\(\Leftrightarrow\sqrt{x^2+a}+x=\sqrt{y^2+a}-y\)
Tương tự ta có: \(\sqrt{y^2+a}+y=\sqrt{x^2+a}-x\)
Cộng theo vế 2 phương trình trên, ta được \(x+y=-\left(x+y\right)\Leftrightarrow x+y=0\)
Bài 3
Áp dụng bất đẳng thức Côsi
\(x\sqrt{x}+y\sqrt{y}+z\sqrt{z}\ge3\sqrt[3]{x\sqrt{x}.y\sqrt{y}.z\sqrt{z}}=3\sqrt{xyz}\)
Dấu bằng xảy ra khi và chỉ khi \(x=y=z\)
Thay vào tính được \(A=2.2.2=8\text{ }\left(x=y=z\ne0\right).\)
nhận liên hợp ta có \(\left(\sqrt{x^2+1}+x\right)\left(\sqrt{x^2+1}-x\right)=x^2+1-x^2=1\)
mà theo đề bài ta có \(\left(\sqrt{x^2+1}+x\right)\left(y+\sqrt{y^2+1}\right)=1\)
==> \(\sqrt{x^2+1}-x=y+\sqrt{y^2+1}\)
tương tự ta có \(\sqrt{x^2+1}+x=\sqrt{y^2+1}-y\)
trừ từng vế 2 pt trên ta có 2x=-2y <=>x=-y
đến đây ok rùi nhé bạn
Xét hạng tử: \(x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}\)
Thay \(xy+yz+zx=1\); ta có:
\(x\sqrt{\frac{\left(y^2+xy+yz+zx\right)\left(z^2+xy+yz+zx\right)}{x^2+xy+yz+zx}}=x\sqrt{\frac{\left(x+y\right)\left(y+z\right)^2\left(x+z\right)}{\left(x+y\right)\left(x+z\right)}}\)
\(=x\sqrt{\left(y+z\right)^2}=xy+xz\)
Tượng tự: \(y\sqrt{\frac{\left(1+z^2\right)\left(1+x^2\right)}{1+y^2}}=xy+yz;z\sqrt{\frac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}=xz+yz\)
Do đó: \(A=2\left(xy+yz+zx\right)=2.1=2\)
ĐS:...
Bài này hình như x,y,z>0
Ta có: \(x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}=x\sqrt{\frac{\left(y^2+xy+yz+zx\right)\left(z^2+xy+yz+zx\right)}{\left(x^2+xy+yz+zx\right)}}=x\sqrt{\frac{\left(y+x\right)\left(y+z\right)\left(z+x\right)\left(z+y\right)}{\left(x+y\right)\left(x+z\right)}}=x\sqrt{\left(y+z\right)^2}\)
Tương tự: \(y\sqrt{\frac{\left(1+z^2\right)\left(1+x^2\right)}{1+y^2}}=y\sqrt{\left(x+z\right)^2}\)
\(z\sqrt{\frac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}=z\sqrt{\left(x+y\right)^2}\)
Cộng từng vế, ta có:
\(A=x\left(y+z\right)+y\left(z+x\right)+z\left(x+y\right)\)
\(\Leftrightarrow A=2\left(xy+yz+zx\right)=2\)
\(\hept{\begin{cases}1+y^2=y^2+xy+yz+zx=\left(x+y\right)\left(y+z\right)\\1+z^2=\left(z+x\right).\left(z+y\right)\\1+x^2=\left(x+y\right)\left(x+z\right)\end{cases}}\)
Thế vào \(A=x\sqrt{\left(y+z\right)^2}+y\sqrt{\left(x+z\right)^2}+z\sqrt{\left(x+y\right)^2}\)
\(=x\left|y+z\right|+y\left|x+z\right|+z\left|x+y\right|\)
\(=2\left(\left|xy\right|+\left|yz\right|+\left|zx\right|\right)\)
Nếu x,y,z\(\ge0\Rightarrow A=2\)
Nếu x,y,z\(< 0\)\(\Rightarrow A=-2\)
Vì xyz=1\(\Rightarrow x^2\left(y+z\right)\ge2x^2\sqrt{yz}=2x\sqrt{x}\)
Tương tự \(y^2\left(z+x\right)\ge2y\sqrt{y};z^2=\left(x+y\right)\ge2z\sqrt{z}\)
\(\Rightarrow P\ge\frac{2x\sqrt{x}}{y\sqrt{y}+2z\sqrt{z}}+\frac{2y\sqrt{y}}{z\sqrt{z}+2x\sqrt{x}}+\frac{2z\sqrt{z}}{x\sqrt{x}+2y\sqrt{y}}\)
Đặt \(x\sqrt{x}+2y\sqrt{y}=a;y\sqrt{y}+2z\sqrt{z}=b;z\sqrt{z}+2x\sqrt{x}=c\)
\(\Rightarrow x\sqrt{x}=\frac{4c+a-2b}{9};y\sqrt{y}=\frac{4a+b-2c}{9};z\sqrt{z}=\frac{4b+c-2a}{9}\)
\(\Rightarrow P\ge\frac{2}{9}\left(\frac{4c+a-2b}{b}+\frac{4a+b-2c}{a}+\frac{4b+c-2a}{b}\right)\)
\(=\frac{2}{9}\text{ }\left[4\left(\frac{c}{b}+\frac{a}{c}+\frac{b}{a}\right)+\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)-6\right]\ge\frac{2}{9}\left(4.3+2-6\right)=2\)
Min P =2 khi và chỉ khi a=b=c khi va chỉ khi x=y=z=1
Okey
\(x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}=x\sqrt{\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)\left(z+y\right)}{\left(z+x\right)\left(x+y\right)}}=x\sqrt{\left(y+z\right)^2}=xy+xz\)
Tương tự thì ta có:
\(P=2\left(xy+yz+zx\right)=2\)
Vậy P=2
2/ \(x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
\(\Leftrightarrow x+y+z=xy+yz+zx\)
\(\Leftrightarrow x+y+z-xy-yz-zx+xyz-1=0\)
\(\Leftrightarrow\left(x-1\right)\left(y-1\right)\left(z-1\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x=1\\y=1\\z=1\end{cases}}\)
\(\Rightarrow P=0\)
\(x^2-\sqrt{x+5}=5\)
\(\Leftrightarrow x^2-5=\sqrt{x+5}\)
\(\Leftrightarrow x^4-10x^2+25=x+5\)
\(\Leftrightarrow x^4-10x^2-x+20=0\)
\(\Leftrightarrow\left(x^2-x-5\right)\left(x^2+x-4\right)=0\)