Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^2-\frac{3}{5^2}=\frac{1}{1.2}+\frac{1}{2.7}+\frac{1}{7.5}+\frac{1}{5.13}+\frac{1}{13.8}+\frac{1}{8.19}+\frac{1}{19.11}+\frac{1}{11.25}\)
\(a^2-\frac{3}{5^2}=2.\left(\frac{1}{2.4}+\frac{1}{4.7}+\frac{1}{7.10}+\frac{1}{10.13}+\frac{1}{13.16}+\frac{1}{16.19}+\frac{1}{19.22}+\frac{1}{22.25}\right)\)
\(a^2-\frac{3}{5^2}=2.\frac{1}{3}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+....+\frac{1}{22}-\frac{1}{25}\right)\)
\(a^2-\frac{3}{5^2}=\frac{2}{3}\left(\frac{1}{2}-\frac{1}{25}\right)\)
=> \(a^2-\frac{3}{25}=\frac{2}{3}.\frac{23}{50}=\frac{23}{75}\)
=> \(a^2=\frac{23}{75}+\frac{3}{25}=\frac{32}{75}\)
=> \(a=\sqrt{\frac{32}{75}}\)(Nếu thế thì đây phải là đề của lớp 7 chứ nhỉ)
a, Ta có : \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{199.200}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{199}-\frac{1}{200}\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{199}+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)
=> \(\frac{\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{199.200}}{\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}}=1\)
=> đpcm
Study well ! >_<
Giải:
\(A^2-\left(\dfrac{3}{5}\right)^2=\dfrac{1}{1.2}+\dfrac{1}{2.7}+\dfrac{1}{7.5}+\dfrac{1}{5.13}+\dfrac{1}{13.8}+\dfrac{1}{8.19}+\dfrac{1}{19.11}+\dfrac{1}{11.25}\)
Gọi: \(B=\dfrac{1}{1.2}+\dfrac{1}{2.7}+\dfrac{1}{7.5}+\dfrac{1}{5.13}+\dfrac{1}{13.8}+\dfrac{1}{8.19}+\dfrac{1}{19.11}+\dfrac{1}{11.25}\)
\(B=\left(\dfrac{1}{1.4}+\dfrac{1}{4.7}+\dfrac{1}{7.10}+\dfrac{1}{10.13}+\dfrac{1}{13.16}+\dfrac{1}{16.19}+\dfrac{1}{19.22}+\dfrac{1}{22.25}\right):\dfrac{1}{2}\) \(B=\left[\dfrac{1}{3}.\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{19.22}+\dfrac{3}{22.25}\right)\right]:\dfrac{1}{2}\)
\(B=\left[\dfrac{1}{3}.\left(\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{19}-\dfrac{1}{22}+\dfrac{1}{22}-\dfrac{1}{25}\right)\right]:\dfrac{1}{2}\)
\(B=\left[\dfrac{1}{3}.\left(\dfrac{1}{1}-\dfrac{1}{25}\right)\right]:\dfrac{1}{2}\)
\(B=\left[\dfrac{1}{3}.\dfrac{24}{25}\right]:\dfrac{1}{2}\)
\(B=\dfrac{8}{25}:\dfrac{1}{2}\)
\(B=\dfrac{16}{25}\)
\(\Rightarrow A^2-\left(\dfrac{3}{5}\right)^2=\dfrac{16}{25}\)
\(A^2=\dfrac{16}{25}+\dfrac{9}{25}\)
\(A^2=1\)
\(\Rightarrow A^2=1^2\) hoặc \(A^2=\left(-1\right)^2\)
\(A=1\) hoặc \(A=-1\)
Chúc bạn học tốt!