Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cây 3 lớp 7A, 7B, 7C trồng được lần lượt là a,b,c(a,b,c>0)
Áp dụng t/c dtsbn ta có:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{5}=\dfrac{a+b+c}{2+3+5}=\dfrac{190}{10}=19\)
\(\dfrac{a}{2}=19\Rightarrow a=38\\ \dfrac{b}{3}=19\Rightarrow b=57\\ \dfrac{c}{5}=19\Rightarrow c=95\)
Gọi số cây của 3 lớp 7A,7B,7C lần lượt là a,b,c
Do a,b,c tỉ lệ thuận với 2,3,5
\(\Rightarrow\) \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{5}=\dfrac{a+b+c}{2+3+5}=\dfrac{190}{10}=19\)
\(\dfrac{a}{2}=19\Rightarrow a=38\)
\(\dfrac{b}{3}=19\Rightarrow b=57\)
\(\dfrac{c}{5}=19\Rightarrow c=95\)
\(Vậy...\)
Gọi x,y,z (cây) lần lượt là số cây trồng được của ba lớp 7A, 7B và 7C ( x, y, z \(\in\) N*)
Do số cây trồng được của ba lớp 7A,7B,7C lần lượt tỉ lệ với 6 ; 4 ; 5 nên:
\(\dfrac{x}{6}=\dfrac{y}{4}=\dfrac{z}{5}\)
Do tổng số cây của lớp 7B và 7C trồng được nhiều hơn của lớp 7A là 15 cây nên:
\(y+z-x=15\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{6}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{y+z-x}{4+5-6}=\dfrac{15}{3}=5\)
\(\Rightarrow\left\{{}\begin{matrix}x=5\cdot6=30\\y=5\cdot4=20\\z=5\cdot5=25\end{matrix}\right.\)
Vậy ...
#Đạt Đang Bận Thở
Gọi số cay trồng được của lớp 7A,7B,7C lần lượt là a,b,c
Theo đề, ta có: a/6=b/4=c/5
Áp dụng tính chất của DTSBN, ta được:
a/6=b/4=c/5=(a-c)/(6-5)=15
=>a=90; b=60; c=75
Gọi số cây trồng được của lớp 7A , 7B , 7C lần lượt là : \(x;y;z\)
Ta có tỉ lệ \(\dfrac{x}{6}=\dfrac{y}{4}=\dfrac{z}{5}\)
Tổng số cây lớp 7B và 7C nhiều hơn lớp 7A là 15 cây
\(\Rightarrow y+z-x=15\)
Theo tính chất dãy tỉ số bằng nhau
\(\dfrac{x}{6}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{y+z-x}{4+5-6}=\dfrac{15}{3}=5\\ \Rightarrow\left\{{}\begin{matrix}x=5.6=30\\y=4.5=20\\z=5.5=25\end{matrix}\right.\)
Vậy lớp 7A trồng được 30 cây , 7B trồng được 20 cây , 7C trồng được 25 cây
Gọi ba lớp `7A;7B;7C` tham gia trồng cây lần lượt là `a,b,c` `( a,b,c ∈ N)`
Theo bài ra ta có : `a/6=b/4=c/5` và `b+c-a=15`
ADTC dãy tỉ số bằng nhau ta có :
` a/6=b/4=c/5=(b+c-a)/(4+5-6)=15/3=5`
`=>a/6=5=>a=5.6=30`
`=>b/4=5=>b=5.4=20`
`=>c/5=5=>c=5.5=25`
Vậy ba lớp `7A;7B;7C` tham gia trồng cây lần lượt được `30;20;25` ( cây ) .
Gọi số cây trồng 3 lớp lần lượt là \(a,b,c\left(a,b,c>0\right)\)
Áp dụng TCDTSBN:
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{\left(a+c\right)-b}{\left(3+5\right)-4}=\dfrac{20}{4}=5\)
\(\Rightarrow\left\{{}\begin{matrix}a=3\cdot5=15\left(cay\right)\\b=4\cdot5=20\left(cay\right)\\c=5\cdot5=25\left(cay\right)\end{matrix}\right.\)
Gọi số cây trồng được của 3 lớp lần lượt là a,b,c (a,b,c >0)
Vì ba lớp 7A,7B,7C tham gia trồng cây biết số cây trồng được của ba lớp là 180 cây
a+b+c=180
Vì số cây trồng được của 7A,7B,7C lần lượt tỉ lệ với 1,2,3
\(\dfrac{a}{1}=\dfrac{b}{2}=\dfrac{c}{3}\)
áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\dfrac{a}{1}=\dfrac{b}{2}=\dfrac{c}{3}=\dfrac{a+b+c}{1+2+3}=\dfrac{180}{6}=30\)
⇒\(\left\{{}\begin{matrix}a=30.1=30\\b=30.2=60\\c=30.3=90\end{matrix}\right.\)
Vậy ......
Gọi số cây trồng được của 3 lớp 7A,7B,7C lần lượt là x,y,z(cây)(x,y,z\(\varepsilon\)\(ℕ^∗\))
Theo bài ra, ta có :
\(\frac{x}{3}\)=\(\frac{y}{4}\)=\(\frac{z}{6}\)và x+y-z=15
áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{x}{3}\)=\(\frac{y}{4}\)=\(\frac{z}{6}\)=\(\frac{x+y-z}{3+4-6}\)=\(\frac{15}{1}\)=15
Nếu \(\frac{x}{3}\)=15\(\Rightarrow\)x=15*3=45
\(\frac{y}{4}\)=15\(\Rightarrow\)y=15*4=60
\(\frac{z}{6}\)=15\(\Rightarrow\)z=15*6=80
Vậy lớp 7A trồng được 45 cây,7B trồng được 60 cây,7C trồng được 80 cây
* là nhân nhé
Gọi số cây 3 lớp 7A, 7B, 7C trồng được lần lượt là a,b,c(a,b,c>0)
Theo bài ra ta có:\(\left\{{}\begin{matrix}\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}\\a+b+c=900\end{matrix}\right.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{3+4+5}=\dfrac{900}{12}=75\)
\(\dfrac{a}{3}=75\Rightarrow a=225\\ \dfrac{b}{4}=75\Rightarrow b=300\\ \dfrac{c}{5}=75\Rightarrow c=375\)
Vậy ...
a/Gọi x, y, z(cây) lần lượt là số cây ba lớp 7A, 7B và 7C trồng được nhân dịp Tết trồng cây
(x, y, z \(\in N\)*)
Theo đề bài, ta có:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{7}\) và \(x+y+z=180\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{7}=\dfrac{x+y+z}{3+5+7}=\dfrac{180}{15}=12\)
\(\Rightarrow\left\{{}\begin{matrix}x=12\cdot3=36\\y=12\cdot5=60\\z=12\cdot7=84\end{matrix}\right.\)
Vậy ...
b/Gọi a, b, c(cm) lần lượt là độ dài ba cạnh của tam giác đó (a, b, c > 0)
Theo đề bài, ta có:
\(\dfrac{a}{2}=\dfrac{b}{4}=\dfrac{c}{5}\) và \(a+b+c=121\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{2}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{2+4+5}=\dfrac{121}{11}=11\)
\(\Rightarrow\left\{{}\begin{matrix}a=11\cdot2=22\\b=11\cdot4=44\\c=11\cdot5=55\end{matrix}\right.\)
Vậy ...
#TiendatzZz