Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử ta có hình thoi ABCD, hai đường chéo AC và BD cắt nhau tại O. Ta cắt hình thoi theo đường chéo AC ta được 2 tam giác.
Lấy AC làm một cạnh hình chữ nhật. Cắt tam giác BAC theo đường BO ta được hai tam giác ghép lại ta có hình chữ nhật.
Vì hình thoi có hai đường chéo vuông góc cắt nhau tại trung điểm mỗi đường nên chia hình thoi thành 4 tam giác bằng nhau.
Giả sử hình chữ nhật ABCD ta chọn trung điểm M của CD. Nối AM, BM ta cắt theo đường AM và BM ta ghép lại được một hình thoi.
Xét △ ABC. Kẻ đường cao AH. Gọi M là trung điểm của AC, N là trung điểm của AB.
Từ M kẻ đường thẳng song song AH cắt BC tại K
Từ N kẻ đường thẳng song song AH cắt BC tại L
Từ A kẻ đường thẳng song song BC cắt hai đường thẳng MK và NL tại T và R
Ta có: △ MKC = △ MTA
△ NLB = △ NAR
Cắt △ ABC theo đường MK và NL ta ghép lại được một hình chữ nhật KTRL có diện tích bằng diện tích tam giác ABC
Cắt một hình thoi theo đường kẻ xanh như hình vẽ trên, ta được 4 tam giác bằng nhau. Ghép 4 tam giác vào 4 góc của hình thoi còn lại như sau để được hình chữ nhật:
- Nhận xét:
+ Diện tích hình chữ nhật = 2 lần diện tích hình thoi
+ Hình chữ nhật có chiều dài và chiều rộng là 2 đường chéo của hìn thoi
=> Diện tích hình thoi = Diện tích hình chữ nhật : 2 = Tích 2 đường chéo của hình thoi : 2
Cho hình chữ nhật ABCD; M,N,P,Q lần lượt là trung điểm của AB,BC, CD, DA.
* Chứng minh MNPQ là hình thoi
Ta có MN = PQ = 1/2BD
NP = MQ = 1/2 AC
Mà AC = BD
⇒ MN = NP = PQ = QM nên tứ giác MNPQ là hình thoi (Có 4 cạnh bằng nhau)
* Theo bài 33 (các em tham khảo ở trên), ta có SMNPQ = SABNQ và SMNPQ = SNQDC
Vì vậy SABCD = SABNQ + SNQDC = 2SMNPQ
* Ta có SABCD =2SMNPQ ⇒ SMNPQ = 1/2SABCD = 1/2AB.BC = 1/2NQ.MP
Vẽ hình chữ nhật ABCD với các trung điểm các cạnh M, N, P, Q.
Vẽ tứ giác MNPQ
Ta có MN = PQ = \(\dfrac{1}{2}\)BD
NP = MQ = \(\dfrac{1}{2}\) AC
Mà AC = BD
Nên tứ giác MNPQ là hình thoi vì có bốn cạnh bằng nhau.
Dễ dàng chứng minh rằng : ∆AMN = ∆INM , ∆BPN = ∆NIP
∆PCQ = ∆IQP, ∆DMQ = IQM
Do đó
SMNPQ = \(\dfrac{1}{2}\) SABCD mà SABCD = AB. AD = MP. NQ
Vậy SMNPQ = \(\dfrac{1}{2}\) MP.NQ