Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1 :
a) 356abc chia hết cho 5;7 và 9
\(\Rightarrow\)356abc chia hết cho BCNN (5,7,9)
\(\Rightarrow\)356abc chia hết cho 315
Ta thấy : 356999 chia cho 315 dư 104. Do đó :
356999 - 104 = 356895 chia hết cho 315
356895 - 315 = 356580 chia hết cho 315
356580 - 315 = 356265 chia hết cho 315
Đó là 3 số cần tìm.
b) S= 5 + 52 + 53 + ........ + 52013
Tổng S có 2013 có số, nhóm 3 số vào 1 nhóm thì vừa hết
Ta có :
S = (5 + 52 + 53) + (54 + 55 + 56) +........+ (52011 + 52012 + 52013)
S = (5 + 52 + 53) + 53(5 + 52 + 53) + ......+ 52010(5 + 52 + 53)
S = 5(1 + 5 + 52) + 54(1 + 5 + 52) + .......+ 52011(1 + 5 + 52)
S = 5 . 31 + 54 . 31 + .......+ 52011 . 31
S = 31(5 + 54 + ......+ 52011) chia hết cho 31
1
A5.S=5+5^2+5^3+5^4+...+5^21
5S-S=(5+5^2+5^3+5^4+...+5^21)-(1+5+5^2+^3+...+5^20)
4.S=5^21-1
S=5^21-1:4
^ LÀ MŨ
A:1=1^21
TA CÓ:5^21-1^21:4
5 KHÔNG CHIA HẾT CHO 6
1KHONG CHIA HẾT CHO 6
4KHOONG CHIA HẾT CHO6
SUY RA KHÔNG CHIA HẾT
B TUONG TỰ
3A
X+6CHIA HẾT CHO X+2
(X+2+4)CHIA HẾT CHO X+2
X+2:X+2
SUY RA 4:X+2
SUY RA X+2 LÀ ƯỚC CỦA 4
Ư(4)={1:2:4}
LẬP BẢNG
x+2 | 1 | 2 | 4 |
x | rỗng | 0 | 2 |
suy ra :x={0:2}
xin lỗi bạn,có một số câu mình không biết làm
Bài 1: y=5; x=5
Bài 2: \(\left(y,x\right)\in\left\{\left(3;4\right);\left(5;2\right);\left(7;0\right);\left(9;7\right)\right\}\)
Bài 3:
a: *=5
b: *=0; *=9
c: *=9
1)
\(222^{333}\) và \(333^{222}\)
\(222^{333}=\left(222^3\right)^{111}=10941048^{111}\)
\(333^{222}=\left(333^2\right)^{111}=110889^{111}\)
vì \(10941048^{111}>110889^{111}\Rightarrow222^{333}>333^2\)
2)
\(1x8y2⋮36\Rightarrow1x8y2⋮4;1x8y2⋮9\)
\(1x8y2⋮4\Leftrightarrow y2⋮\Leftrightarrow y=\left\{1;5;9\right\}\)
-nếu\(y=1\Rightarrow1x812⋮9\Leftrightarrow\left(1+x+8+1+2\right)⋮9\Leftrightarrow12+x⋮9\Leftrightarrow x=6\)nếu \(y=5\Rightarrow1x852⋮9\Leftrightarrow\left(1+x+8+5+2\right)⋮9\Leftrightarrow16+x⋮9\Leftrightarrow x=2\)nếu \(y=9\Rightarrow1x892⋮9\Leftrightarrow\left(1+x+8+9+2\right)⋮9\Leftrightarrow20+x⋮9\Leftrightarrow x=7\)
Mk chỉ tập trung giải câu b thui nha
a) p = 2
b) Ta có S= 5 + 52+53+...+52013
=> S = (5+52+53)+...+(52011+52012+52013)
=> S =5(1+5+25)+...+52011(1+5+25)
=> S = 5.31+....+52011.31
=> S = 31(5+54+...+52011)
=> S chia hết cho 31 (ĐPCM)
a) Khi p = 2 thì p + 11 = 13 ( thỏa mãn )
Xét p > 2 :
Khi p = 2k+1 thì p + 11 = 2k + 12 = 2(k+6) mà p > 2 nên p + 11 > 2 nên khi p = 2k +1 thì p+ 11 là hợp số ( loại )
Vậy \(p=2\)
b) \(S=5+5^2+5^3+....+5^{2013}\)
Vì S có 2013 số hạng nên khi chia thành 1 nhóm sẽ có đủ số vì \(2013⋮3\)
\(\Rightarrow S=\left(5+5^2+5^3\right)+......+\left(5^{2011}+5^{2012}+5^{2013}\right)\)
\(S=5\left(1+5+5^2\right)+.....+5^{2011}\left(1+5+5^2\right)\)
\(S=5.31+.....+5^{2011}.31\)
\(S=31\left(5+......+5^{2011}\right)\)
Vì \(S=5+5^2+5^3+....+5^{2013}\)nên \(S\inℕ\)và \(S=31.\left(5+.....+5^{2011}\right)\)
\(\Rightarrow S⋮31\)
Vậy \(S⋮31\left(ĐPCM\right)\)
S = 5⁰ + 5¹ + 5² + ... + 5²⁰²³
= (5⁰ + 5¹) + (5² + 5³) + ... + (5²⁰²² + 5²⁰²³)
= 6 + 5².(1 + 5) + ... + 5²⁰²².(1 + 5)
= 6 + 5².6 + ... + 5²⁰²².6
= 6.(1 + 5² + ... + 5²⁰²²) ⋮ 6
Vậy S ⋮ 6
--------
Số số hạng của S:
2023 - 0 + 1 = 2024 (số)
2024 : 3 dư 2 nên khi nhóm các số hạng của S theo nhóm 3 thì dư 2 số hạng
Ta có:
S = 5⁰ + 5¹ + 5² + 5³ + ... + 5²⁰²³
= 5⁰ + 5¹ + (5² + 5³ + 5⁴) + (5⁵ + 5⁶ + 5⁷) + ... + (5²⁰²¹ + 5²⁰²² + 5²⁰²³)
= 6 + 5².(1 + 5 + 5²) + 5⁵.(1 + 5 + 5²) + ... + 5²⁰²¹.(1 + 5 + 5²)
= 6 + 5².31 + 5⁵.31 + ... + 5²⁰²¹.31
= 6 + 31.(5² + 5⁵ + ... + 5²⁰²¹)
Do 31.(5² + 5⁵ + ... + 5²⁰²¹) ⋮ 31
6 + 31.(5² + 5⁵ + ... + 5²⁰²¹) chia 31 dư 6
Vậy S chia 31 dư 6
------------
Sửa đề:
Tìm số tự nhiên n để 4S - 25² = -1
S = 5⁰ + 5¹ + 5² + 5³ + ... + 5²⁰²³
5S = 5 + 5² + 5³ + 5⁴ + ... + 5²⁰²⁴
⇒ 4S = 5S - S
= (5 + 5² + 5² + 5³ + ... + 5²⁰²⁴) - (1 + 5¹ + 5² + 5³ + ... + 5²⁰²³)
= 5²⁰²⁴ - 1
⇒ 4S - 25²ⁿ = -1
⇒ 5²⁰²⁴ - 1 - (5²)²ⁿ = -1
⇒ 5²⁰²⁴ - 5⁴ⁿ = -1 + 1
⇒ 5⁴ⁿ = 5²⁰²⁴
⇒ 4n = 2024
⇒ n = 2024 : 4
⇒ n = 506
\(S=\left(5^0+5^1\right)+\left(5^2+5^3\right)+...+\left(5^{2022}+5^{2023}\right)\\ =6+5^2\left(1+5\right)+...+5^{2022}\left(1+5\right)\\ =6+5^2.6+...+5^{2022}.6\\ =6\left(1+5^2+...+5^{2022}\right)⋮6\)
\(S=\left(5^0+5^1+5^2\right)+...+\left(5^{2021}+5^{2022}+5^{2023}\right)\\ =31+...+5^{2021}\left(1+5+5^2\right)\\ =31\left(1+...+5^{2021}\right)⋮31\)
=> Dư : 0
\(5S=5^1+5^2+5^3+5^4+...+5^{2024}\\ =>5S-S=4S=5^{2024}-1\)
Mà : \(4S-25^{2n}=1\\ =>5^{2024}-1-25^{2n}=1\\ =>5^{2024}-25^{2n}=2\)
Bạn xem lại đề nhé
gtgtfgvghjghmkj
srtfkgiyttfetdreeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee