Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(+,x=1\Leftrightarrow P=3.1^2+5=8\)
+, \(x=0\Leftrightarrow P=3.0^2+5=5\)
+, \(x=3\Leftrightarrow P=3.3^2+5=17\)
b/ Với mọi x ta có :
\(3x^2\ge0\)
\(5>0\)
\(\Leftrightarrow3x^2+5>0\)
\(\Leftrightarrow P>0\)
\(\Leftrightarrow P\) luôn dương với mọi x
Sửa đề: f(x) = x² - 4x + 3
a) f(0) = 0 - 4.0 + 3 = 3
f(1) = 1 - 4.1 + 3 = 0
f(3) = 9 - 4.3 + 3 = 0
b) x = 1 và x = 3 là nghiệm của đa thức f(x) vì f(1) = 0 và f(3) = 0
TuanMinhAms sai rồi bn
để A lớn nhất \(\Rightarrow\left|x-2013\right|+2\) bé nhất
\(\left|x-2013\right|\ge0\Rightarrow\left|x-2013\right|+2\ge2\)
dấu "=" xảy ra khi \(\left|x-2013\right|=0\Rightarrow x=2013\)
khi đó GTLN của A = \(\frac{2026}{2}=1013\)
p/s: sai mk góp ý ko pk soi bài hay xúc phạm bn nha =]
\(A=\frac{2026}{\left|x-2013\right|}+2\)
Để A nhỏ nhất thì \(\frac{2026}{\left|x-2013\right|}\)nhỏ nhất
\(\Rightarrow\left|x-2013\right|\)nhỏ nhất
Mà \(\left|x-2013\right|\ge0\forall x\)và \(\left|x-2013\right|\ne0\)
\(\Rightarrow\left|x-2013\right|=1\)thì A nhỏ nhất
Khi đó \(A=\frac{2026}{1}+2=2023+2=2028\)
Vậy Amax = 2028 <=> | x - 2013 | = 1 <=> x ∈ { 2014; 2012 }
\(a)\) Ta có :
\(A=\frac{1}{x^2-4x+7}\)
\(A=\frac{1}{\left(x^2-4x+4\right)+3}\)
\(A=\frac{1}{\left(x-2\right)^2+3}\)
Lại có :
\(\left(x-2\right)^2\ge0\)
\(\Rightarrow\)\(\left(x-2\right)^2+3\ge3\)
\(\Rightarrow\)\(A=\frac{1}{\left(x-2\right)^2+3}\le\frac{1}{3}\)
Dấu "=" xảy ra khi và chỉ khi \(\left(x-2\right)^2+3=3\)
\(\Leftrightarrow\)\(\left(x-2\right)^2=3-3\)
\(\Leftrightarrow\)\(\left(x-2\right)^2=0\)
\(\Leftrightarrow\)\(x-2=0\)
\(\Leftrightarrow\)\(x=2\)
Vậy GTLN của \(A\) là \(\frac{1}{3}\) khi 2\(x=2\)
Chúc bạn học tốt ~
\(b)\) Ta có :
\(f\left(x\right)=x^2-4x+7\)
\(f\left(x\right)=\left(x^2-4x+4\right)+3\)
\(f\left(x\right)=\left(x-2\right)^2+3\ge3>0\)
Vậy đa thức \(f\left(x\right)\) vô nghiệm
Chúc bạn học tốt ~