K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2018

a) Ta có: P(x) = 3y + 6 có nghiệm khi

3y + 6 = 0

3y = -6

y = -2

Vậy đa thức P(y) có nghiệm là y = -2.

b) Q(y) = y4 + 2

Ta có: y4 có giá trị lớn hơn hoặc bằng 0 với mọi y

Nên y4 + 2 có giá trị lớn hơn 0 với mọi y

Tức là Q(y) ≠ 0 với mọi y

Vậy Q(y) không có nghiệm.

28 tháng 3 2018

a) Ta có: P(x) = 3y + 6 có nghiệm khi:

    3y + 6 = 0

    3y = –6

    y = –2

Vậy đa thức P(y) có nghiệm là y = –2.

b) Ta có: y4 ≥ 0 với mọi y.

Nên y4 + 2 > 0 với mọi y.

Tức là Q(y) ≠ 0 với mọi y.

Vậy Q(y) không có nghiệm. (đpcm)

(Giải thích: y4 có số mũ là số chẵn nên nó luôn có giá trị lớn hơn hoặc bằng 0. Kể cả khi bạn thay y bằng số âm vào. Ví dụ, thay y = -2 chẳng hạn thì y4 = (-2)4 = 16 là số dương.)

25 tháng 5 2016

Đây là toán lớp 7 chứ bạn

25 tháng 5 2016

p(x)=0 q(x)=0 x^2+4x+10=0 x^2+x+1=0 x^2+2x+2x+4+6=0 x^2+1/2x+1/2x+1/4+3/4=0 x(x+2)+2(x+2)=-6 x(x+1/2)+1/2(x+1/2)+3/4=0 (x+2)(x+2) =-6 (x+1/2)(x+1/2) = -3/4 (x+2)^2 = -6 ( vô lí )

11 tháng 5 2020

Trình bày đề bài cho dễ nhìn bạn eyy :v 

Khó nhìn như này thì God cũng chịu -.-

11 tháng 5 2020

mù mắt xD ghi rõ đề đi bạn ơi !

28 tháng 3 2019

giảm biến là j

7 tháng 7 2020

a,\(M(x)=6x^3+2x^4-x^2+3x^2-2x^3-x^4+1-4x^3\)

\(=(2x^4-x^4)+(6x^3-2x^3-4x^3)+(-x^2+3x^2)+1\)

\(=x^4+2x^2+1\)

b.\(M(x)+N(x)=(x^4+2x^2+1)+(-5x^4+x^3+3x^2-3)\)

\(=(x^4-5x^4)+x^3+(2x^2+3x^2)+(1-3)\)

\(=-4x^4+x^3+5x^2-2\)

\(M(x)-N(x)=(x^4+2x^2+1)-(-5x^4+x^3+3x^2-3)\)

\(=(x^4+5x^4)-x^3+(2x^2-3x^2)+(1+3)\)

\(=6x^4-x^3-x^2+4\)

c.Ta có

\(M(x)=x^4+2x^2+1=0\)

\(\Rightarrow x^4+2x^2=-1\)

mà \(x^4\ge0;2x^2\ge0\)

Vậy đa thức \(M(x)\)ko có nghiệm

Chúc bạn học tốt

2 tháng 7 2016

a. Cho đa thức: x – 1/2 x2 = 0

-Phân tích được: x(1 – 1/2x) = 0

– suy ra:  x = 0  hoặc: 1 – 1/2x = 0 ⇒ x = 2

– Vậy nghiệm của đa thức đã cho là x = 0; x = 2.

b.Cho biết (x – 1).f(x) = (x + 4). f(x + 8) với mọi x

Chứng minh rằng f(x) có ít nhất hai nghiệm.

Vì (x – 1).f(x) = (x + 4). f(x + 8) với mọi x nên ta có:

+ Khi x = 1 thì  0.f(1) = (1 + 4).f(1 + 8)

⇒   0 = 5. f(9) ⇒  f(9) = 0

⇒ x = 9 là một nghiệm của f(x)

+ Khi x= – 4 thì (- 4 – 1).f(-4) = 0. f(-4 + 8)

⇒ -5.f(-4) = 0.f(4) ⇒ f(-4) = 0

⇒ x= – 4 là một nghiệm của f(x)

Vậy f(x) có ít nhất hai nghiệm là 1 và – 4  (đpcm)

 
  
2 tháng 7 2016

nha bạn nào k cho mình nhớ nhắn tin cho mình biết mình sẽ k lại cho

28 tháng 4 2019

đây mà là toán 6 ábucminh

28 tháng 4 2019

đây là toán nâng cao lớp mấy mà khó vậybatngo

13 tháng 5 2017

Theo đề:

f(1)=a+b+c+d=0

f(-1)=-a+b-c+d=0

=>f(1)+f(-1)=2(b+d)=0 => b+d = 0 => b=-d (1)

f(1)-f(-1)=2(a+c)=0 => a+c=0 => a=-c(2) 

Thay (1),(2) vào pt:

f(x)= -cx^3-dx^2+cx+d = cx(1 - x^2) + d(1 - x^2) = (cx + d)(1 - x)(1 + x) =0

=> x=1,x=-1, x= -d/c

Vậy nghiệm thứ 3 của f(x) là x= -d/c 

17 tháng 7 2016

a) ( x - 2 ) ( x + 2 ) = 0

   \(\Rightarrow\) x - 2 = 0                            hoặc                         x + 2 = 0

       \(\Leftrightarrow\) x = 2                                                     \(\Leftrightarrow\) x = -2

b) Ta có x2 + 1 > 0

=> x -1 = 0   => x =1

\(\left(x-2\right)\left(x+2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-2=0\\x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}}\)

\(\left(x-1\right)\left(x^2+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-1=0\\x^2+1=0\end{cases}\Rightarrow x=1}\)

3 tháng 5 2018

            cho       \(x^2+3x+3=0\)

                      \(\Rightarrow x^2+3x+3=0\)

                        \(x^2+3x=-3\) 

                       \(x^2+x=-3-3\)

                         \(x^2+x=-6\)(ktm)

                   ta có \(x^2\)> 0

\(\Rightarrow x^2+3x+3 \)k có nghiệm

3 tháng 5 2018

Nghiệm  toán lớp 7 mà

cho x2+3x+3 = 0 

vì trong đa thức này có x2 lớn lơn hoặc = 0 

và có 3 là số dương nên dù 2 hạng tử trước là 0 thì đa thức =3