K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2019

câu a mình ko biết làmbucminh

b.A=\(\frac{a}{b+c}\)=\(\frac{c}{a+b}=\frac{b}{c+a}=\frac{a+c+b}{b+c+a+b+c+a}=\frac{a+b+c}{\left(a+b+c\right)^2}=\frac{1}{2}\)

chúc bạn học tốthihi

20 tháng 7 2019

1. Tìm x, biết :

a. ( x - \(\frac{3}{4}\)\(^2\)= 0

=> x - \(\frac{3}{4}\)= 0

=> x = 0 + \(\frac{3}{4}\)

=> x = \(\frac{3}{4}\)

b. ( x + \(\frac{1}{2}\)\(^2\)\(\frac{9}{64}\)

=> ( x + \(\frac{1}{2}\)\(^2\)= ( \(\frac{3}{8}\)\(^2\)

=> x + \(\frac{1}{2}\)\(\frac{3}{8}\)

=> x = \(\frac{3}{8}\)\(\frac{1}{2}\)

=> x = \(\frac{-1}{8}\)

c.  \(\frac{\left(-2\right)^x}{16}=-8\)

=> \(\frac{\left(-2\right)^x}{16}=\frac{-8}{1}=\frac{-128}{16}\)

=> ( -2)\(^x\)= -128

=> ( -2 ) \(^x\)= ( -2) \(^7\)

=> x = 7

11 tháng 9 2016

a)\(\left(2x-3\right)\left(x+1\right)< 0\)

\(\Leftrightarrow\begin{cases}2x-3>0\\x+1< 0\end{cases}\)  hoặc \(\begin{cases}2x-3< 0\\x+1>0\end{cases}\)

\(\Leftrightarrow\begin{cases}x>\frac{3}{2}\\x< -1\end{cases}\) (loại)  hoặc \(\begin{cases}x< \frac{3}{2}\\x>-1\end{cases}\)

\(\Leftrightarrow-1< x< \frac{3}{2}\)

b) \(\left(x-\frac{1}{2}\right)\left(x+3\right)>0\)

\(\Leftrightarrow\begin{cases}x-\frac{1}{2}>0\\x+3>0\end{cases}\) hoặc \(\begin{cases}x-\frac{1}{2}< 0\\x+3< 0\end{cases}\)

\(\Leftrightarrow\begin{cases}x>\frac{1}{2}\\x>-3\end{cases}\) hoặc \(\begin{cases}x< \frac{1}{2}\\x< -3\end{cases}\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x>\frac{1}{2}\\x< -3\end{array}\right.\)

c) Sai đề phải là \(\frac{x}{\left(x+3\right)\left(x+7\right)}\)

Có: \(\frac{3}{\left(x+3\right)\left(x+5\right)}+\frac{5}{\left(x+5\right)\left(x+10\right)}+\frac{7}{\left(x+10\right)\left(x+17\right)}=\frac{x}{\left(x+3\right)\left(x+17\right)}\)

\(\Leftrightarrow\)\(\frac{1}{x+3}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+10}+\frac{1}{x+10}-\frac{1}{x+7}=\frac{x}{\left(x+3\right)\left(x+7\right)}\)

\(\Leftrightarrow\)\(\frac{1}{x+3}-\frac{1}{x+7}=\frac{x}{\left(x+3\right)\left(x+7\right)}\)

\(\Leftrightarrow\)\(\frac{4}{\left(x+3\right)\left(x+7\right)}=\frac{x}{\left(x+3\right)\left(x+7\right)}\)

\(\Leftrightarrow x=4\)

11 tháng 9 2016

đề dúng đấy , bạn làm sai rồi

14 tháng 5 2016

2.ta có |x-1|+(y+2)mũ 20=0=>x-1=0 đồng thời y+2=0

<=>x=1 và y=-2

Thay x=1 y=-2 vào B ta có:13.(1)^5-5.(-2)^3+2016=1989

25 tháng 10 2020

Ta có \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)

=> \(\left(\frac{a}{b}\right)^3=\left(\frac{b}{c}\right)^3=\left(\frac{c}{d}\right)^3=\left(\frac{a+b+c}{b+c+d}\right)^3\)

=> \(\left(\frac{a}{b}\right)^3=\left(\frac{a+b+c}{b+c+d}\right)^3\)

=> \(\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\left(\frac{a+b+c}{b+c+d}\right)^3\)

=> \(\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\left(\frac{a+b+c}{b+c+d}\right)^3\) (Vì \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\))

=> \(\frac{a}{d}=\left(\frac{a+b+c}{b+c+d}\right)^3\)(đpcm)

20 tháng 2 2018

b, \(2^n\left(2^{-1}+4\right)=9\cdot2^5\)

=> \(2^n\cdot\frac{9}{2}=9\cdot2^5\)

=> \(2^n=2^6\)

Vậy \(n=6\left(tm\right)\)

20 tháng 2 2018

a, \(A=4\cdot16\cdot\frac{9}{16}\cdot\frac{4}{5}\cdot\frac{27}{8}=\frac{486}{5}=97,2\)

1 tháng 3 2017

a) \(\frac{2}{3a}-\frac{3}{a}=\frac{2}{3a}-\frac{9}{3a}=\frac{-7}{3a}=\frac{7}{15}\Leftrightarrow-3a=15\Leftrightarrow a=-5\)

b)\(2x^3-1=15\Leftrightarrow2x^3=16\Leftrightarrow x^3=8\Leftrightarrow x=2\)

\(\Rightarrow\frac{2+16}{9}=\frac{y-15}{16}=2\Leftrightarrow y-15=32\Leftrightarrow y=47\)

c) \(\left|x\right|=3\Rightarrow\orbr{\begin{cases}x=-3\\x=3\end{cases}}\) rồi xét 2 trường hợp để tính A nhé :)

1 tháng 3 2017

Bài 1: ĐK của a: \(a\ne0\)

Quy đồng VT ta có: \(\frac{2a-9a}{3a^2}=\frac{7}{15}\)

                    \(\Leftrightarrow\frac{-7a}{3a^2}=\frac{7}{15}\)

                    \(\Leftrightarrow-7a.15=3a^2.7\)

                    \(\Leftrightarrow-105a=21a^2\)

                    \(\Leftrightarrow-105a-21a^2=0\)

                    \(\Leftrightarrow a\left(-105-21a\right)=0\)

                    \(\Leftrightarrow\hept{\begin{cases}a=0\left(l\right)\\-105-21a=0\end{cases}\Leftrightarrow a=-5\left(n\right)}\)

Vậy:..