Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có;
\(\left(x-0,2\right)^{10}\ge0;\left(y-3,2\right)^{20}\ge0\)
để (x - 0,2)10 + (y - 3,1)20 = 0 thì:
x-0,2=0 và y-3,1=0
<=>x=0,2 và y=3,1
Số có số mũ chẵn luôn \(\ge\) 0.
Do đó \(\left(x-0,2\right)^{10}\ge0\) và \(\left(y-3,1\right)^{20}\ge0\)
Mà (x - 0,2)10 + (y - 3,1)20 = 0
\(\Rightarrow\) (x - 0,2)10 = 0 và (y - 3,1)20 = 0
\(\Rightarrow\) x - 0,2 = 0 và y - 3,1 = 0
\(\Rightarrow\) x = 0,2 và y = 3,1
( x - 0,2 )10 + ( y - 3 . 1)10 = 0
\(\Rightarrow\hept{\begin{cases}\left(x-0,2\right)10=0\\\left(y-3.1\right)10=0\end{cases}\Rightarrow\hept{\begin{cases}x-0,2=0\\y-3=0\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x=0,2\\y=3\end{cases}}\)
( x - 0.2 )10 + ( y + 3 . 1 )10 = 0
10 [ x + ( y + 3 ) ] = 0
10 ( x + y + 3 ) = 0
x + y + 3 = 0 : 10
x + y + 3 = 0
x + y = 0 - 3
x + y = -3
Đến đây có rất nhiều kết quả nên mình chỉ viết một số kết quả thường gặp :
x = -3 ; y = 0
x = -2 ; y = -1
x = -1 ; y = -2
x = 0 ; y = -3
x = 3 ; y = -6
....
Post cái đề hỏi người khác còn k xong thì khi nào học mới khá
\(\left(x-0,2\right)^{10}+\left(y+3,1\right)^{10}=0\)
Thấy: \(\left\{{}\begin{matrix}\left(x-0,2\right)^{10}\ge0\\\left(y+3,1\right)^{10}\ge0\end{matrix}\right.\)\(\forall x,y\)
\(\Rightarrow\left(x-0,2\right)^{10}+\left(y+3,1\right)^{10}\ge0\)
Xảy ra khi \(\left\{{}\begin{matrix}\left(x-0,2\right)^{10}=0\\\left(y+3,1\right)^{10}=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x-0,2=0\\y+3,1=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=0,2\\y=-3,1\end{matrix}\right.\)
Ta có: \(\left(x-0,2\right)^{10}+\left(y-3,1\right)^{10}\ge0\)
Mà \(\left(x-0,2\right)^{10}+\left(y-3,1\right)^{10}=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x-0,2\right)^{10}=0\\\left(y-3,1\right)^{10}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0,2\\y=3,1\end{matrix}\right.\)
Vậy x = 0,2 và y = 3,1
Do 10 là số chẵn suy ra
(x-0,2)10=(y-3,1)10 =0(vì (x-0,2)10=(y-3,1)10 ">" hoặc "=" 0 mà tồng 2 số dương > 0)
(x-0,2)10=(y-3,1)10=010
suy ra x-0,2=0
x =0+0,2=0,2
y-3,1=0
y=0+3,1=3,1
Tick dùm mk nha
a) Ap dụng tích chất dãy tỉ số = nhau
Ta có:x/2=y/3=x+y/5+7=15/15=1
x/2=1=> x=2
y/3=1=> y=3
x + x : 0,2 = 1,35
x * 1 + x * 5 = 1,35
x * ( 1 + 5 ) = 1,35
x * 6 = 1,35
x = 1,35 : 6
x = 0,225
hok tốt nha ^_^
a: \(\left(2x-y+7\right)^{2022}>=0\forall x,y\)
\(\left|x-1\right|^{2023}>=0\forall x\)
=>\(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}>=0\forall x,y\)
mà \(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}< =0\forall x,y\)
nên \(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}=0\)
=>\(\left\{{}\begin{matrix}2x-y+7=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2x+7=9\end{matrix}\right.\)
\(P=x^{2023}+\left(y-10\right)^{2023}\)
\(=1^{2023}+\left(9-10\right)^{2023}\)
=1-1
=0
c: \(\left|x-3\right|>=0\forall x\)
=>\(\left|x-3\right|+2>=2\forall x\)
=>\(\left(\left|x-3\right|+2\right)^2>=4\forall x\)
mà \(\left|y+3\right|>=0\forall y\)
nên \(\left(\left|x-3\right|+2\right)^2+\left|y+3\right|>=4\forall x,y\)
=>\(P=\left(\left|x-3\right|+2\right)^2+\left|y-3\right|+2019>=4+2019=2023\forall x,y\)
Dấu '=' xảy ra khi x-3=0 và y-3=0
=>x=3 và y=3
b, tìm x,y biết |x-2018|+|y+2019|=0
\(\Rightarrow\hept{\begin{cases}|x-2018|=0\\|y+2019|=0\end{cases}}\Rightarrow\hept{\begin{cases}x-2018=0\\y+2019=0\end{cases}}\Rightarrow\hept{\begin{cases}x=2018\\y=-2019\end{cases}}\)
vậy x=2018 ; y=-2019
a)
ta có \(\hept{\begin{cases}\left|x\right|\ge0\\\left|y+1\right|\ge0\end{cases}}\Rightarrow\left|x\right|+\left|y+1\right|\ge0\Rightarrow A_{min}=0\Leftrightarrow\hept{\begin{cases}x=0\\y+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=-1\end{cases}}\)
b)
ta có \(\hept{\begin{cases}\left|x-2018\right|\ge0\\\left|y+2019\right|\ge0\end{cases}}\)
mà \(\left|x-2018\right|+\left|y+2019\right|=0\Rightarrow\hept{\begin{cases}x-2018=0\\y+2019=0\end{cases}\Rightarrow\hept{\begin{cases}x=2018\\y=-2019\end{cases}}}\)