Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
b) Phương trình hoành độ giao điểm của hai đường thẳng đã cho:
-3x + 5 = 2x
⇔ 2x + 3x = 5
⇔ 5x = 5
⇔ x = 1 ⇒ y = 2.1 = 2
Vậy M(1; 2)
b: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}3x^2-2x-1=0\\y=3x^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x^2-3x+x-1=0\\y=3x^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(3x+1\right)=0\\y=3x^2\end{matrix}\right.\Leftrightarrow\left(x,y\right)\in\left\{\left(1;3\right);\left(-\dfrac{1}{3};\dfrac{1}{3}\right)\right\}\)
b: PTHĐGĐ là:
x^2+3x-4=0
=>(x+4)(x-1)=0
=>x=-4 hoặc x=1
=>y=16 hoặc y=1
a)
b) *) Thay x = 0 vào (d) ta có:
y = 1/2 . 0 - 2 = -2
⇒ M(0; -2)
Thay x = 0 vào (d) ta có:
y = 1/4 . 0 + 2 = 2
⇒ N(0; 2)
Phương trình hoành độ giao điểm của (d) và (d)
1/2 x - 2 = 1/4 x + 2
⇔ 1/2 x - 1/4 x = 2 + 2
⇔ 1/4 x = 4
⇔ x = 4 : (1/4)
⇔ x = 16
Thay x = 16 vào (d) ta có:
y = 1/2 . 16 - 2 = 6
⇒ P(16; 6)
a)Tự vẽ
b) Xét pt hoành độ gđ của (P) và (d) có:
\(\dfrac{3}{2}x^2=x+\dfrac{1}{2}\)
\(\Leftrightarrow3x^2-2x-1=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\Rightarrow y=\dfrac{3}{2}.\left(-\dfrac{1}{3}\right)^2=\dfrac{1}{6}\\x=1\Rightarrow y=\dfrac{3}{2}\end{matrix}\right.\)
Vậy gđ của (d) và (P) là \(\left(-\dfrac{1}{3};\dfrac{1}{6}\right),\left(1;\dfrac{3}{2}\right)\)
c) Gọi đt cần tìm có dạng (d') \(y=ax+b\) (a2+b2>0)
Gọi A(-4;y1) và B(2;y2) là hai giao điểm của (P) và (d')
\(A;B\in\left(P\right)\Rightarrow\left\{{}\begin{matrix}y_1=24\\y_2=6\end{matrix}\right.\)
\(\Rightarrow A\left(-4;24\right),B\left(2;6\right)\) \(\in\left(d'\right)\)
\(\Rightarrow\left\{{}\begin{matrix}24=-4a+b\\6=2a+b\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=-3\\b=12\end{matrix}\right.\) (thỏa)
Vậy (d'): y=-3x+12
b. PTHDGD: \(2x=x+1\Leftrightarrow x=1\Leftrightarrow y=2\Leftrightarrow A\left(1;2\right)\)
Vậy tọa độ giao điểm 2 đt là \(A\left(1;2\right)\)
a, (d) cắt trục hoành tại A(xA;0) và trục tung B(0;xB)
Vì A thuộc (d) nên \(0=-2x_A+4\Leftrightarrow x_A=2 \Rightarrow A(2;0)\)
Vì B thuộc (d) nên \(y_B=-2.0+4=4\Rightarrow B(0;4)\)
Vậy A(2;0) và B(0;4) là hai điểm cần tìm.
b, Gọi C(xc;yc) là điểm có hoành độ bằng tung độ
⇒ xc = yc = a. Vì C thuộc (d) nên \(a=-2a+4\Leftrightarrow a=\dfrac{4}{3}\)
⇒ \(C(\dfrac{4}{3};\dfrac{4}{3})\) là điểm cần tìm.
a:
b: PTHĐGĐ là:
2x^2+3x+1=0
=>x=-1 hoặc x=-1/2
=>y=2 hoặc y=1/2
\(a,\) Tự vẽ nha
\(b,\) Gọi \(A\left(x_A;y_A\right);B\left(x_B;y_B\right)\) là tọa độ của \(\left(P\right)\) và \(\left(d\right)\)
Ta có : \(\left(P\right)=\left(d\right)\)
Suy ra :
\(2x^2=-3x-1\)
\(\Leftrightarrow2x^2+3x+1=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1=-\dfrac{1}{2}\\x_2=-1\end{matrix}\right.\)
Thay \(x_1=-\dfrac{1}{2}\) vào \(\left(P\right):y=2x^2\Rightarrow y=2.\left(-\dfrac{1}{2}\right)^2=\dfrac{1}{2}\)
Thay \(x_2=-1\) vào \(\left(d\right):y=-3x-1\Rightarrow y=-3.\left(-1\right)-1=2\)
Vậy tọa độ của 2 đồ thị hàm số là \(A\left(-\dfrac{1}{2};\dfrac{1}{2}\right);B\left(-1;2\right)\)
b: Tọa độ C là:
5-3x=1/3x+2 và y=5-3x
=>-10/3x=-3 và y=5-3x
=>x=-3:(-10/3)=9/10 và y=5-3*9/10=5-27/10=23/10