K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2017

a) * Vẽ đồ thị hàm số y = 0,5x + 2 (1)

Cho x = 0, tính được y = 2 => D(0; 2) thuộc đồ thị.

Cho y = 0, 0 = 0,5.x + 2 => x = -4 => A(-4; 0) thuộc đồ thị. Đường thẳng vẽ qua A, D là đồ thị của (1).

*Vẽ đồ thị hàm số y = 5 – 2x (2)

-Cho x = 0 tính được y = 5 E(0; 5) thuộc đồ thị

-Cho y = 0, 0 = 5 – 2x => x = 2,5 => B(2,5; 0) thuộc đồ thị. Đường thẳng vẽ qua B, E là đồ thị của (2).

Để học tốt Toán 9 | Giải bài tập Toán 9

b) Ở câu a) ta tính được tọa độ của hai điểm A và B: A(-4; 0), B(2,5; 0)

Để học tốt Toán 9 | Giải bài tập Toán 9Để học tốt Toán 9 | Giải bài tập Toán 9

26 tháng 12 2019

a) - Vẽ đồ thị hàm số y = 0,5x + 2 (1)

    Cho x = 0 => y = 2 được D(0; 2)

    Cho y = 0 => 0 = 0,5.x + 2 => x = -4 được A(-4; 0)

Nối A, D ta được đồ thị của (1).

- Vẽ đồ thị hàm số y = 5 – 2x (2)

    Cho x = 0 => y = 5 được E(0; 5)

    Cho y = 0 =>0 = 5 – 2x => x = 2,5 được B(2,5; 0)

Nối B, E ta được đồ thị của (2).

Để học tốt Toán 9 | Giải bài tập Toán 9

b) Ở câu a) ta tính được tọa độ của hai điểm A và B là A(-4 ; 0) và B (2,5 ; 0)

Hoành độ giao điểm C của hai đồ thị (1) và (2) là nghiệm của phương trình:

0,5 x + 2 = 5 - 2x

⇔ 0,5x + 2x = 5 – 2

⇔ 2,5.x = 3 ⇔ x = 1,2

⇒ y = 0,5.1,2 + 2 = 2, 6

Vậy tọa độ điểm C(1,2; 2,6).

c) AB = AO + OB = |-4| + |2,5| = 6,5 (cm)

Gọi H là hình chiếu của C trên Ox, ta có H( 1,2; 0)

Ta có: AH = AO + OH = 4 + 1,2 = 5,2

BH = BO – OH = 2,5 – 1,2 = 1,3

CH = 2,6

Để học tốt Toán 9 | Giải bài tập Toán 9

d) Gọi α là góc hợp bởi đường thẳng y = 0,5x + 2 với tia Ox.

Ta có: tgα = 0,5 => α = 26o34'

Gọi β là góc hợp bởi đường thẳng y = 5 - 2x với tia Ox

Tam giác OEB vuông tại O nên:

Để học tốt Toán 9 | Giải bài tập Toán 9

2 tháng 11 2018

a) Đồ thị hàm số y = 0,5x + 2 là đường thẳng đi qua các điểm (0; 2) và (-4; 0)

Đồ thị hàm số y = 5 – 2x là đường thẳng đi qua các điểm (0; 5) và (2,5; 0)

b) Ta có A(-4; 0), B(2,5; 0)

Tìm tọa độ điểm C, ta có: phương trình hoành độ giao điểm của đường thẳng y = 0,5x + 2 và y = 5 – 2x là

0,5x + 2 = 5 – 2x ⇔ 2,5x = 3

                               ⇔ x = 1,2

Do đó y = 0,5 . 1,2 + 2 = 2,6. Vậy C (1,2; 2,6)

c) Gọi D là hình chiếu của C trên Ox ta có:

CD = 2,6; AB = AO + OB = 4 + 2,5 = 6,5 (cm)

∆ACD vuông tại D nên AC2 = CD2 + DA2

⇒AC=√2,62+5,22=√33,8≈5,81(cm)⇒AC=2,62+5,22=33,8≈5,81(cm)

 Tương tự : BC=√BD2+CD2BC=BD2+CD2

                       =√1,32+2,62=√8,45≈2,91(cm)=1,32+2,62=8,45≈2,91(cm)

d) Ta có ∆ACD vuông tại D nên tgˆCAD=CDAD=2,65,2=12tgCAD^=CDAD=2,65,2=12

 ⇒ˆCAD≈26034′⇒CAD^≈26034′. Góc tạo bởi đường thẳng y=12x+2y=12x+2 và trục Ox là 26034’

Ta có ∆CBD vuông tại D nên tgˆCBD=CDBD=2,61,3=2⇒ˆCBD≈63026′tgCBD^=CDBD=2,61,3=2⇒CBD^≈63026′ 

Góc tạo bởi đường thẳng y = 5 – 2x và trục Ox là 1800 – 63026’ ≈ 116034’

a) - Vẽ đồ thị hàm số y = 0,5x + 2 (1)

    Cho x = 0 => y = 2 được D(0; 2)

    Cho y = 0 => 0 = 0,5.x + 2 => x = -4 được A(-4; 0)

Nối A, D ta được đồ thị của (1).

- Vẽ đồ thị hàm số y = 5 – 2x (2)

    Cho x = 0 => y = 5 được E(0; 5)

    Cho y = 0 =>0 = 5 – 2x => x = 2,5 được B(2,5; 0)

Nối B, E ta được đồ thị của (2).

Để học tốt Toán 9 | Giải bài tập Toán 9

b) Ở câu a) ta tính được tọa độ của hai điểm A và B: A(-4; 0), B(2,5; 0)

Hoành độ giao điểm C của hai đồ thị là nghiệm phương trình:

    0,5x + 2 = 5 – 2x => x = 1,2

=> y = 0,5.1,2 + 2 = 2,6

=> Tọa độ C(1,2 ; 2,6)

c) AB = AO + OB = |-4| + |2,5| = 6,5 (cm)

Gọi H là hình chiếu của C trên Ox, ta có H( 1,2; 0)

Để học tốt Toán 9 | Giải bài tập Toán 9

d) Gọi α là góc hợp bởi đường thẳng y = 0,5x + 2 với tia Ox.

Ta có: tgα = 0,5 => α = 26o34'

Gọi β là góc hợp bởi đường thẳng y = 5 – 2x với tia Ox (β là góc tù).

Gọi β' là góc kề bù với β, ta có:

tgβ' = -(-2) = 2 => β' = 63o26'

=> β = 180o – 63o26' = 116o34'

4 tháng 10 2019

a) Vẽ đường thẳng y = -x + 2

    Cho x = 0 => y = 2 được C(0; 2)

    Cho y = 0 => x = 2 được A(2; 0)

Nối A, C ta được đường thẳng y = -x + 2

Để học tốt Toán 9 | Giải bài tập Toán 9

    Cho x = 0 => y = 2 được C(0; 2)

    Cho y = 0 => x = -4 được B(-4; 0)

Để học tốt Toán 9 | Giải bài tập Toán 9

Để học tốt Toán 9 | Giải bài tập Toán 9

c) Áp dụng định lí Pitago ta có:

Để học tốt Toán 9 | Giải bài tập Toán 9

10 tháng 2 2017

a) Vẽ đường thẳng qua O(0; 0) và điểm M(1; 1) được đồ thị hàm số y = x.

Vẽ đường thẳng qua B(0; 2) và A(-2; -2) được đồ thị hàm số y = 2x + 2.

Để học tốt Toán 9 | Giải bài tập Toán 9

b) Hoành độ giao điểm của 2 đồ thị hàm số là nghiệm của phương trình:

        2x + 2 = x

=> x = -2 => y = -2

Suy ra tọa độ giao điểm là A(-2; -2).

c) Qua B(0; 2) vẽ đường thẳng song song với Ox, đường thẳng này có phương trình y = 2 và cắt đường thẳng y = x tại C.

- Tọa độ điểm C:

Hoành độ giao điểm của 2 đồ thị hàm số là nghiệm của phương trình:

    x = 2 => y = 2 => tọa độ C(2; 2)

- Tính diện tích tam giác ABC: (với BC là đáy, AE là chiều cao tương ứng với đáy BC)

Để học tốt Toán 9 | Giải bài tập Toán 9

2 tháng 2 2021

a) 1 0 2 y x C y = x y=2x+2 H B -1 2

+) y = 2x + 2

Cho x = 0 => y = 2

                => ( 0 ; 2 )

        y = 0 => x = -1

                => ( -1 ; 0 )

- Đồ thị hàm số y = x đi qua 2 điểm có tọa độ ( 0 ; 0 )

- Đồ thị hàm số y = 2x + 2 đi qua 2 điểm có tọa độ ( 0 ; 2 ) và ( -1 ; 0 )

b) Hoành độ điểm A là nghiệm của PT sau :

x = 2x + 2

<=> 2x - x = -2

<=> x = -2

=> y = -2 

Vậy A ( -2 ; -2 )

c) Tung độ điểm C = 2 => hoành độ điểm C là x = 2

=> C ( 2 ; 2 )

Từ A hạ \(AH\perp BC\), ta có : AH = 4cm

                                                 BC = 2cm

Vậy : ..............

\(\Rightarrow S_{ABC}=\frac{1}{2}AH.BC=\frac{1}{2}.4.2=4\left(cm^2\right)\)

20 tháng 12 2021

jdhjdhshfsjsxhxhxx                  udjdghxhjxhg

20 tháng 12 2021

sao dạo này toàn người cho toán lớp 9 nhỉ khó qué

b: Tọa độ điểm C là:

\(\left\{{}\begin{matrix}2.5x+3=-0.5x+1.5\\y=2.5x+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=-1.5\\y=2.5x+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=\dfrac{5}{2}\cdot\dfrac{-1}{2}+3=3-\dfrac{5}{4}=\dfrac{7}{4}\end{matrix}\right.\)

21 tháng 12 2020

b) Vì C(xC,yC) là giao điểm của hai đường thẳng y=x+2 và y=-2x+5 nên hoành độ của C là nghiệm của phương trình hoành độ giao điểm có hai vế là hai hàm số của y=x+2 và y=-2x+5

hay x+2=-2x+5

\(\Leftrightarrow x+2+2x-5=0\)

\(\Leftrightarrow3x-3=0\)

\(\Leftrightarrow3x=3\)

hay x=1

Thay x=1 vào hàm số y=x+2, ta được: 

y=1+2=3

Vậy: C(1;3)

Vì A(xA;yA) là giao điểm của đường thẳng y=x+2 với trục hoành nên yA=0

Thay y=0 vào hàm số y=x+2, ta được: 

x+2=0

hay x=-2

Vậy: A(-2:0)

Vì B(xB,yB) là giao điểm của đường thẳng y=-2x+5 với trục hoành Ox nên yB=0

Thay y=0 vào hàm số y=-2x+5, ta được: 

-2x+5=0

\(\Leftrightarrow-2x=-5\)

hay \(x=\dfrac{5}{2}\)

Vậy: \(B\left(\dfrac{5}{2};0\right)\)

Độ dài đoạn thẳng AB là:

\(AB=\sqrt{\left(xA-xB\right)^2+\left(yA-yB\right)^2}\)

\(\Leftrightarrow AB=\sqrt{\left(-2-\dfrac{5}{2}\right)^2+\left(0-0\right)^2}\)

\(\Leftrightarrow AB=\sqrt{\left(-\dfrac{9}{2}\right)^2}=\dfrac{9}{2}=4,5\left(cm\right)\)

Độ dài đoạn thẳng AC là: 

\(AC=\sqrt{\left(xA-xC\right)^2+\left(yA-yC\right)^2}\)

\(\Leftrightarrow AC=\sqrt{\left(-2-1\right)^2+\left(0-3\right)^2}\)

\(\Leftrightarrow AC=\sqrt{18}=3\sqrt{2}\left(cm\right)\)

Độ dài đoạn thẳng BC là: 

\(BC=\sqrt{\left(xB-xC\right)^2+\left(yB-yC\right)^2}\)

\(\Leftrightarrow BC=\sqrt{\left(\dfrac{5}{2}-1\right)^2+\left(0-3\right)^2}\)

\(\Leftrightarrow BC=\sqrt{\dfrac{45}{4}}=\dfrac{3\sqrt{5}}{2}\left(cm\right)\)

Chu vi của tam giác ABC là:

\(C_{ABC}=AB+AC+BC\)

\(\Leftrightarrow C_{ABC}=4.5+3\sqrt{2}+\dfrac{3\sqrt{5}}{2}\simeq12.10cm\)

Nửa chu vi của tam giác ABC là: 

\(P_{ABC}=\dfrac{C_{ABC}}{2}\simeq\dfrac{12.10}{2}=6.05cm\)

Diện tích của tam giác ABC là: 

\(S_{ABC}=\sqrt{P\cdot\left(P-AB\right)\cdot\left(P-BC\right)\cdot\left(P-AC\right)}\)

\(=\sqrt{6.05\cdot\left(6.05-4.5\right)\cdot\left(6.05-3\sqrt{2}\right)\cdot\left(6.05-\dfrac{3\sqrt{5}}{2}\right)}\)

\(\simeq6.76cm^2\)

21 tháng 12 2020

jup e nốt câu a vs 

5 tháng 2 2018

Ở câu a) ta tính được tọa độ của hai điểm A và B là A(-4 ; 0) và B (2,5 ; 0)

Hoành độ giao điểm C của hai đồ thị (1) và (2) là nghiệm của phương trình:

0,5 x + 2 = 5 - 2x

⇔ 0,5x + 2x = 5 – 2

⇔ 2,5.x = 3 ⇔ x = 1,2

⇒ y = 0,5.1,2 + 2 = 2, 6

Vậy tọa độ điểm C(1,2; 2,6).