Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(\frac{2}{\sqrt{x}-2}+\frac{3}{2\sqrt{x}+1}-\frac{5\sqrt{x}-7}{2x-3\sqrt{x}-2}\right):\)\(\frac{2\sqrt{x}+3}{5x-10\sqrt{x}}\)
\(=\left(\frac{2}{\sqrt{x}-2}+\frac{3}{2\sqrt{x}+1}-\frac{5\sqrt{x}-7}{\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1\right)}\right)\)\(:\frac{2\sqrt{x}+3}{5x-10\sqrt{x}}\)
\(=\frac{2\left(2\sqrt{x}+1\right)+3\left(\sqrt{x}-2\right)-5\sqrt{x}+7}{\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1\right)}\)\(:\frac{2\sqrt{x}+3}{5\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\frac{4\sqrt{x}+2+3\sqrt{x}-6-5\sqrt{x}+7}{\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1\right)}\)\(.\frac{5\sqrt{x}\left(\sqrt{x}-2\right)}{2\sqrt{x}+3}\)
\(=\frac{2\sqrt{x}+3}{2\sqrt{x}+1}.\frac{5\sqrt{x}}{2\sqrt{x}+3}=\frac{5\sqrt{x}}{2\sqrt{x}+1}\)
\(A\in Z\Leftrightarrow\frac{5\sqrt{x}}{2\sqrt{x}+1}\in Z\Leftrightarrow\frac{10\sqrt{x}}{2\sqrt{x}+1}\in Z\)
\(\Rightarrow\frac{10\sqrt{x}+5-5}{2\sqrt{x}+1}\in Z\Leftrightarrow5-\frac{5}{2\sqrt{x}+1}\in Z\)
\(\Rightarrow\frac{5}{2\sqrt{x}+1}\in Z\Rightarrow2\sqrt{x}+1\inƯ_5\)
Mà \(Ư_5=\left\{\pm1;\pm5\right\}\)
Nhưng \(2\sqrt{x}+1\ge1\)
\(\Rightarrow\orbr{\begin{cases}2\sqrt{x}+1=1\\2\sqrt{x}+1=5\end{cases}\Rightarrow\orbr{\begin{cases}2\sqrt{x}=0\\2\sqrt{x}=4\end{cases}}}\)
\(\Rightarrow\orbr{\begin{cases}\sqrt{x}=0\\\sqrt{x}=2\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}}\)
Vậy \(x\in\left\{0;4\right\}\)
a, Đặt\(\sqrt{x.\left(5-x\right)}=t\) \(\left(0\le t\right)\)
Bpt trở thành: \(-t^2+t+2< 0\)
<=> \(\left[{}\begin{matrix}t< -1\left(loai\right)\\t>2\end{matrix}\right.\)
Với t>2 =>\(\sqrt{x.\left(5-x\right)}>2\)
<=>\(-x^2+5x-4>0\)
<=>\(1< x< 4\)
<=>\(x\in\left(1;4\right)\)
b/ Hiển nhiên rằng vế phải không âm, do đó nghiệm của BPT chính là tất cả các giá trị làm cho biểu thức xác định
Vậy bạn chỉ cần tìm ĐKXĐ cho vế trái là xong (rất đơn giản)
\(\frac{2x-5}{!x-3!}+1>0\Leftrightarrow\frac{2x-5+!x-3!}{!x-3}>0\)
do !x-3!>0 mọi x khác 3=> Bất phương trình tương đương
\(2x-5+!x-3!>0\Leftrightarrow!x-3!>5-2x\)
TH(1) x<3 <=>3-x>5-2x=> x>2
Kết luận(1) \(2< x< 3\)
TH(2) \(x\ge3\Leftrightarrow x-3>5-2x\Rightarrow3x>8\Rightarrow x>\frac{8}{3}\)
Kết luận(2) \(x\ge3\)
(1)và(2) nghiệm của Bpt là: x>2
a/ ĐKXĐ: ...
\(\Leftrightarrow\sqrt{2x^2+5x+2}=2\sqrt{2x^2+5x-6}\)
\(\Leftrightarrow2x^2+5x+2=4\left(2x^2+5x-6\right)\)
\(\Leftrightarrow6x^2+15x-26=0\)
b/ ĐKXĐ: ...
Đặt \(\sqrt[5]{\frac{16x}{x-1}}=a\)
\(a+\frac{1}{a}=\frac{5}{2}\Leftrightarrow a^2-\frac{5}{2}a+1=0\)
\(\Rightarrow\left[{}\begin{matrix}a=2\\a=\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\sqrt[5]{\frac{16x}{x-1}}=2\\\sqrt[5]{\frac{16x}{x-1}}=\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}16x=32\left(x-1\right)\\16x=\frac{1}{32}\left(x-1\right)\end{matrix}\right.\)
c/ĐKXĐ: ...
\(\Leftrightarrow x^2-2x-\sqrt{6x^2-12x+7}=0\)
Đặt \(\sqrt{6x^2-12x+7}=a\ge0\Rightarrow x^2-2x=\frac{a^2-7}{6}\)
\(\frac{a^2-7}{6}-a=0\Leftrightarrow a^2-6a-7=0\)
\(\Rightarrow\left[{}\begin{matrix}a=-1\left(l\right)\\a=7\end{matrix}\right.\) \(\Rightarrow\sqrt{6x^2-12x+7}=7\)
\(\Leftrightarrow6x^2-12x-42=0\)
d/ \(\Leftrightarrow x^2+x+4-\sqrt{x^2+x+4}-2=0\)
Đặt \(\sqrt{x^2+x+4}=a>0\)
\(a^2-a-2=0\Rightarrow\left[{}\begin{matrix}a=-1\left(l\right)\\a=2\end{matrix}\right.\)
\(\Rightarrow\sqrt{x^2+x+4}=2\Rightarrow x^2+x=0\)
e/ \(\Leftrightarrow x^2+2x+\sqrt{3x^2+6x+4}-2=0\)
Đặt \(\sqrt{3x^2+6x+4}=a>0\Rightarrow x^2+2x=\frac{a^2-4}{3}\)
\(\frac{a^2-4}{3}+a-2=0\)
\(\Leftrightarrow a^2+3a-10=0\Rightarrow\left[{}\begin{matrix}a=2\\a=-5\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{3x^2+6x+4}=2\Rightarrow3x^2+6x=0\)
a/ ĐKXĐ: ...
\(\Leftrightarrow3\left(\sqrt{x}+\frac{1}{2\sqrt{x}}\right)=2\left(x+\frac{1}{4x}\right)-7\)
Đặt \(\sqrt{x}+\frac{1}{2\sqrt{x}}=a>0\Rightarrow a^2=x+\frac{1}{4x}+1\)
\(\Rightarrow x+\frac{1}{4x}=a^2-1\)
Pt trở thành:
\(3a=2\left(a^2-1\right)-7\)
\(\Leftrightarrow2a^2-3a-9=9\Rightarrow\left[{}\begin{matrix}a=3\\a=-\frac{3}{2}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x}+\frac{1}{2\sqrt{x}}=3\)
\(\Leftrightarrow2x-6\sqrt{x}+1=0\)
\(\Rightarrow\sqrt{x}=\frac{3+\sqrt{7}}{2}\Rightarrow x=\frac{8+3\sqrt{7}}{2}\)
b/ ĐKXĐ:
\(\Leftrightarrow5\left(\sqrt{x}+\frac{1}{2\sqrt{x}}\right)=2\left(x+\frac{1}{4x}\right)+4\)
Đặt \(\sqrt{x}+\frac{1}{2\sqrt{x}}=a>0\Rightarrow x+\frac{1}{4x}=a^2-1\)
\(\Rightarrow5a=2\left(a^2-1\right)+4\Leftrightarrow2a^2-5a+2=0\)
\(\Rightarrow\left[{}\begin{matrix}a=2\\a=\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\sqrt{x}+\frac{1}{2\sqrt{x}}=2\\\sqrt{x}+\frac{1}{2\sqrt{x}}=\frac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x-4\sqrt{x}+1=0\\2x-\sqrt{x}+1=0\left(vn\right)\end{matrix}\right.\)
c/ ĐKXĐ: ...
\(\Leftrightarrow\sqrt{2x^2+8x+5}-4\sqrt{x}+\sqrt{2x^2-4x+5}-2\sqrt{x}=0\)
\(\Leftrightarrow\frac{2x^2-8x+5}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\frac{2x^2-8x+5}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)
\(\Leftrightarrow\left(2x^2-8x+5\right)\left(\frac{1}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\frac{1}{\sqrt{2x^2-4x+5}+2\sqrt{x}}\right)=0\)
\(\Leftrightarrow2x^2-8x+5=0\)
d/ ĐKXĐ: ...
\(\Leftrightarrow x+1-\frac{15}{6}\sqrt{x}+\sqrt{x^2-4x+1}-\frac{1}{2}\sqrt{x}=0\)
\(\Leftrightarrow\frac{x^2-\frac{17}{4}x+1}{\left(x+1\right)^2+\frac{15}{6}\sqrt{x}}+\frac{x^2-\frac{17}{4}x+1}{\sqrt{x^2-4x+1}+\frac{1}{2}\sqrt{x}}=0\)
\(\Leftrightarrow\left(x^2-\frac{17}{4}x+1\right)\left(\frac{1}{\left(x+1\right)^2+\frac{15}{6}\sqrt{x}}+\frac{1}{\sqrt{x^2-4x+1}+\frac{1}{2}\sqrt{x}}\right)=0\)
\(\Leftrightarrow x^2-\frac{17}{4}x+1=0\)
\(\Leftrightarrow4x^2-17x+4=0\)
b)\(\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}=3\left(x+y\right)\)
\(\Rightarrow\left(\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}\right)^2=\left(3\left(x+y\right)\right)^2\)
\(\Leftrightarrow\sqrt{\left(5x^2+2xy+2y^2\right)\left(2x^2+2xy+5y^2\right)}=x^2+7xy+y^2\)
\(\Rightarrow\left(5x^2+2xy+2y^2\right)\left(2x^2+2xy+5y^2\right)=\left(x^2+7xy+y^2\right)^2\)
\(\Leftrightarrow9\left(x-y\right)^2\left(x+y\right)^2=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=-y\end{matrix}\right.\)
\(\rightarrow\left(x;y\right)\in\left\{\left(0;0\right),\left(1;1\right)\right\}\)