Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}x\left(x+y+z\right)=13\\y\left(x+y+z\right)=7\\z\left(x+y+z\right)=-4\end{matrix}\right.\) \(\Leftrightarrow x\left(x+y+z\right)+y\left(x+y+z\right)+z\left(x+y+z\right)=13+7-4\)
\(\Rightarrow\left(x+y+z\right)\left(x+y+z\right)=16\)
\(\Rightarrow\left(x+y+z\right)^2=16\)
\(\Rightarrow\left[{}\begin{matrix}x+y+z=4\\x+y+z=-4\end{matrix}\right.\)
Với \(x+y+z=4\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{13}{4}\\y=\dfrac{7}{4}\\z=-1\end{matrix}\right.\)
Với \(x+y+z=-4\)
\(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{13}{4}\\y=-\dfrac{7}{4}\\z=1\end{matrix}\right.\)
Ta có: \(\dfrac{y-z}{\left(x-y\right)\left(x-z\right)}=\dfrac{y-x+x-z}{\left(x-y\right)\left(x-z\right)}\)\(=\dfrac{y-x}{\left(x-y\right)\left(x-z\right)}+\dfrac{x-z}{\left(x-y\right)\left(x-z\right)}\) \(=\dfrac{1}{z-x}+\dfrac{1}{x-y}\)
Tương tự:
\(\dfrac{z-x}{\left(y-z\right)\left(y-x\right)}=\dfrac{1}{x-y}+\dfrac{1}{y-z}\)
\(\dfrac{x-y}{\left(z-x\right)\left(z-y\right)}=\dfrac{1}{y-z}+\dfrac{1}{z-x}\)
\(\Rightarrow\dfrac{y-z}{\left(x-y\right)\left(x-z\right)}+\dfrac{z-x}{\left(y-z\right)\left(y-x\right)}+\dfrac{x-y}{\left(z-x\right)\left(z-y\right)}\) \(=\dfrac{2}{x-y}+\dfrac{2}{y-z}+\dfrac{2}{z-x}\) \(\left(đpcm\right)\)
Ta có :
\(a\left(y+z\right)=b\left(z+x\right)=c\left(x+y\right)\)
\(\Leftrightarrow\dfrac{z+x}{a}=\dfrac{y+x}{b}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{z+x}{a}=\dfrac{y+x}{b}=\dfrac{z+x-y-x}{a-b}=\dfrac{x-y}{a-b}\)
\(\Leftrightarrow\dfrac{z+x}{a}.\dfrac{1}{c}=\dfrac{z+x}{b}.\dfrac{1}{c}=\dfrac{x-y}{c\left(a-b\right)}\left(1\right)\)
Ta lại có :
\(b\left(z+x\right)=c\left(x+y\right)\)
\(\Leftrightarrow\dfrac{z+x}{b}=\dfrac{x+y}{c}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{z+x}{b}=\dfrac{x+y}{c}=\dfrac{z+x-x-y}{b-c}=\dfrac{y-y}{b-c}\)
\(\Leftrightarrow\dfrac{z+x}{b}.\dfrac{1}{a}=\dfrac{x+y}{c}.\dfrac{1}{a}=\dfrac{y-x}{a\left(c-b\right)}\left(2\right)\)
Lại có :
\(a\left(y+z\right)=c\left(x+y\right)\)
\(\Leftrightarrow\dfrac{y+z}{a}=\dfrac{x+y}{c}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{y+z}{a}=\dfrac{x+y}{c}=\dfrac{y+z-x-y}{a-c}=\dfrac{z-x}{a-c}\)
\(\Leftrightarrow\dfrac{y+z}{a}.\dfrac{1}{b}=\dfrac{x+y}{c}.\dfrac{1}{b}=\dfrac{z-x}{b\left(c-a\right)}\left(3\right)\)
Từ \(\left(1\right)+\left(2\right)+\left(3\right)\Leftrightarrowđpcm\)
Áp dụng tc dtsbn:
\(\dfrac{x}{2013}=\dfrac{y}{2014}=\dfrac{z}{2015}=\dfrac{x-z}{-2}=\dfrac{y-z}{-1}=\dfrac{x-y}{-1}\\ \Leftrightarrow\dfrac{x-z}{2}=\dfrac{y-z}{1}=\dfrac{x-y}{1}\\ \Leftrightarrow x-z=2\left(y-z\right)=2\left(x-y\right)\\ \Leftrightarrow\left(x-z\right)^3=8\left(x-y\right)^3=8\left(x-y\right)^2\left(x-y\right)=8\left(x-y\right)^2\left(y-z\right)\)
=> x-y /35 = y-z/15 = z-x /21
Theo tính chất dãy tỉ số bằng nhau ta có:
x-y /35 = y-z/15 = z-x /21 = x-y + y-z + z-x / 35+15+21 = 0
=>x-y =0
y-z =0
z-x =0
=>x=y=z
thay vào đẳng thức cầm c/m ta có 2 vế đều = 0 vì y-x=0 và z-y=0 (do x=y=z)
Hầy mình không nghĩ lớp 7 đã phải làm những bài biến đổi như thế này. Cái này phù hợp với lớp 8-9 hơn.
1.
Đặt $x^2-y^2=a; y^2-z^2=b; z^2-x^2=c$.
Khi đó: $a+b+c=0\Rightarrow a+b=-c$
$\text{VT}=a^3+b^3+c^3=(a+b)^3-3ab(a+b)+c^3$
$=(-c)^3-3ab(-c)+c^3=3abc$
$=3(x^2-y^2)(y^2-z^2)(z^2-x^2)$
$=3(x-y)(x+y)(y-z)(y+z)(z-x)(z+x)$
$=3(x-y)(y-z)(z-x)(x+y)(y+z)(x+z)$
$=3.4(x-y)(y-z)(z-x)=12(x-y)(y-z)(z-x)$
Ta có đpcm.
Bài 2:
Áp dụng kết quả của bài 1:
Mẫu:
$(x^2-y^2)^3+(y^2-z^2)^3+(z^2-x^2)^3=3(x-y)(y-z)(z-x)(x+y)(y+z)(z+x)=3(x-y)(y-z)(z-x)(1)$
Tử:
Đặt $x-y=a; y-z=b; z-x=c$ thì $a+b+c=0$
$(x-y)^3+(y-z)^3+(z-x)^3=a^3+b^3+c^3$
$=(a+b)^3-3ab(a+b)+c^3=(-c)^3-3ab(-c)+c^3=3abc$
$=3(x-y)(y-z)(z-x)(2)$
Từ $(1);(2)$ suy ra \(\frac{(x-y)^3+(y-z)^3+(z-x)^3}{(x^2-y^2)^3+(y^2-z^2)^3+(z^2-x^2)^3}=1\)
Lời giải:
Ta thấy, với mọi $x,y,z$ là số thực thì:
$(x-y+z)^2\geq 0$
$\sqrt{y^4}\geq 0$
$|1-z^3|\geq 0$
$\Rightarrow (x-y+z)^2+\sqrt{y^4}+|1-z^3|\geq 0$ với mọi $x,y,z$
Kết hợp $(x-y+z)^2+\sqrt{y^4}+|1-z^3|\leq 0$
$\Rightarrow (x-y+z)^2+\sqrt{y^4}+|1-z^3|=0$
Điều này xảy ra khi: $x-y+z=y^4=1-z^3=0$
$\Leftrightarrow y=0; z=1; x=-1$
câu hỏi là j
tim x,y,z