Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Đường tròn cần tìm có tâm \(I=\left(-\dfrac{1}{2};\dfrac{3}{2}\right)\), bán kính \(R=\dfrac{\sqrt{2}}{2}\)
Phương trình đường tròn: \(\left(x+\dfrac{1}{2}\right)^2+\left(y-\dfrac{3}{2}\right)^2=\dfrac{1}{2}\)
b, (C) có tâm \(I=\left(1;2\right)\), bán kính \(R=\sqrt{2}\)
Giao điểm của (C) và trục tung có tọa độ là nghiệm hệ:
\(\left\{{}\begin{matrix}x^2+y^2-2x-4y+3=0\\x=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y^2-4y+3=0\\x=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=0\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}y=1\\x=0\end{matrix}\right.\)
\(\Rightarrow\) Giao điểm: \(M=\left(0;3\right);N=\left(0;1\right)\)
Phương trình tiếp tuyến tại M có dạng: \(\Delta_1:ax+by-3b=0\left(a^2+b^2\ne0\right)\)
Ta có: \(d\left(I;\Delta_1\right)=\dfrac{\left|a+2b-3b\right|}{\sqrt{a^2+b^2}}=\sqrt{2}\)
\(\Leftrightarrow a^2+b^2-2ab=2a^2+2b^2\)
\(\Leftrightarrow\left(a+b\right)^2=0\)
\(\Leftrightarrow a=-b\)
\(\Rightarrow\Delta_1:x-y+3=0\)
Tương tự ta tìm được tiếp tuyến tại N: \(\Delta_2=x+y-1=0\)
Gọi I là trung điểm AB
=> I có toạ độ: \(\left\{{}\begin{matrix}x_I=\dfrac{x_A+x_B}{2}=\dfrac{1}{2}\\y_I=\dfrac{y_A+y_B}{2}=3\end{matrix}\right.\)
Độ dài đoạn CI = \(\sqrt{\left(\dfrac{1}{2}-5\right)^2+\left(3+1\right)^2}=\dfrac{\sqrt{145}}{2}\)
Phương trình đường tròn có tâm là trung điểm AB và đi qua C có
Tâm \(I\left(\dfrac{1}{2};3\right)\)
Bán Kính IC = \(\dfrac{\sqrt{145}}{2}\)
=> Phương trình đường tròn: \(\left(x-\dfrac{1}{2}\right)^2+\left(y-3\right)^2=\dfrac{145}{4}\)
a.
\(\overrightarrow{BC}=\left(2;-3\right)\Rightarrow\) đường thẳng BC nhận (3;2) là 1 vtpt
Phương trình BC:
\(3\left(x-2\right)+2\left(y-3\right)=0\Leftrightarrow3x+2y-12=0\)
b.
Gọi G là trọng tâm ABC \(\Rightarrow G\left(\dfrac{7}{3};\dfrac{4}{3}\right)\)
(C) tiếp xúc BC \(\Leftrightarrow d\left(G;BC\right)=R\)
\(\Rightarrow R=\dfrac{\left|3.\dfrac{7}{3}+2.\dfrac{4}{3}-12\right|}{\sqrt{3^2+2^2}}=\dfrac{7\sqrt{13}}{39}\)
Phương trình: \(\left(x-\dfrac{7}{3}\right)^2+\left(y-\dfrac{4}{3}\right)^2=\dfrac{49}{117}\)
Giả sử:I(a;b) là tâm của đường tròn cần tìm.
Ta có: R=d(I;Ox)=|b|
Phương trình đường tròn có dạng
(C):(x–a)2+(y–b)2=b2
Vì (1;1)∈(C) và (1;4)∈(C) nên ta có hệ:\(\left\{{}\begin{matrix}\left(1-a\right)^2+\left(1-b\right)^2=b^2\left(1\right)\\\left(1-a\right)^2+\left(4-b\right)^2=b^2\left(2\right)\end{matrix}\right.\)
Từ hệ trên ta suy ra:(1–b)2=(4–b)2 ⇔ b=\(\dfrac{5}{2}\).
Thay b=\(\dfrac{5}{2}\) vào (1) ta được: a=3,a=−1
Vậy có hai phương trình đường tròn thỏa mãn yêu cầu bài toán
(x–3)2+(y–\(\dfrac{5}{3}\))2=\(\dfrac{25}{4}\)
(x+1)2+(y–\(\dfrac{5}{2}\))2=\(\dfrac{25}{4}\)
a.
\(R=d\left(A;d\right)=\dfrac{\left|3+1-2\right|}{\sqrt{1^2+1^2}}=\sqrt{2}\)
Phương trình đường tròn:
\(\left(x-3\right)^2+\left(y-1\right)^2=2\)
b.
Tiếp tuyến d' qua O nên có dạng: \(ax+by=0\)
d' tiếp xúc (C) nên \(d\left(A;d'\right)=R\)
\(\Leftrightarrow\dfrac{\left|3a+b\right|}{\sqrt{a^2+b^2}}=\sqrt{2}\Leftrightarrow\left(3a+b\right)^2=2a^2+2b^2\)
\(\Leftrightarrow7a^2+6ab-b^2=0\Rightarrow\left(a+b\right)\left(7a-b\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}a+b=0\\7a-b=0\end{matrix}\right.\) chọn \(\left[{}\begin{matrix}\left(a;b\right)=\left(1;-1\right)\\\left(a;b\right)=\left(1;7\right)\end{matrix}\right.\)
Có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}x-y=0\\x+7y=0\end{matrix}\right.\)
c.
Gọi M là trung điểm EF
\(\Rightarrow AM\perp EF\Rightarrow AM=d\left(A;d\right)=\sqrt{2}\)
\(S_{AEF}=\dfrac{1}{2}AM.EF=6\Rightarrow AM.EF=12\)
\(\Rightarrow EF=\dfrac{12}{\sqrt{2}}=6\sqrt{2}\)
\(\Rightarrow EM=\dfrac{EF}{2}=3\sqrt{2}\)
Áp dụng Pitago:
\(R'=AE=\sqrt{EM^2+AM^2}=2\sqrt{5}\)
\(CA=\sqrt{\left(2-1\right)^2+\left(-5-1\right)^2}=\sqrt{37}\)
\(CB=\sqrt{\left(2-0\right)^2+\left(-5-3\right)^2}=2\sqrt{17}\)
Vì CA<>CB
nên ko có đường tròn tâm C có A,B thuộc đường tròn đó