K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2016

hvrfyht

16 tháng 4 2016

giúp mình đi

21 tháng 11 2018

\(Taco::::::::::::::::::::::::::::::::::::::::::::::::::::::::::\)

\(GỌi:ƯCLN\left(2n+1;7n+2\right)=d\Rightarrow7\left(2n+1\right)-2\left(7n+2\right)⋮d\Rightarrow3⋮d\)

Để 2n+1 và 7n+2 nguyên tố cùng nhau thì: 2n+1 hoặc 7n+2 ko chia hết cho 3

Giả sử: 2n+1 chia hết cho 3

=> 2n+1-3 chia hết cho 3

=> 2n-2 chia hết cho 3

=> 2(n-1) chia hết cho 3=> n-1 chia hết cho 3

Giả sử: 7n+2 chia hết cho 3

=> 7n+2-9 chia hết cho 3

=>.........

Vậy với n khác 3k+1;3k+2 thì thỏa mãn

21 tháng 11 2018

MK nhầm chỉ khác 3k+1 nha bỏ đoạn dưới

AH
Akai Haruma
Giáo viên
31 tháng 10

Lời giải:
$a=1+2+...+n=\frac{n(n+1)}{2}$

$b=2n+1$

Giả sử $a,b$ không nguyên tố cùng nhau. Gọi $p$ là ước nguyên tố lớn nhất của $a,b$.

$\Rightarrow a=\frac{n(n+1)}{2}\vdots p; b=2n+1\vdots p$

Có:

$\frac{n(n+1)}{2}\vdots p\Rightarrow n\vdots p$ hoặc $n+1\vdots p$

Nếu $n\vdots p$. Kết hợp với $2n+1\vdots p\Rightarrow 1\vdots p\Rightarrow p=1$ (vô lý) 

Nếu $n+1\vdots p$. Kết hợp với $2n+1\vdots p\Rightarrow 2(n+1)-(2n+1)\vdots p$

$\Rightarrow 1\vdots p\Rightarrow p=1$ (vô lý)

Vậy điều giả sử là sai. Tức là $a,b$ là hai số nguyên tố cùng nhau. 

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.

Gọi $d=ƯCLN(2k+1, 2k+3)$

$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$

$\Rightarrow (2k+3)-(2k+1)\vdots d$

$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$

Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)

$\Rightarrow d=1$

Vậy $2k+1,2k+3$ nguyên tố cùng nhau. 

Ta có đpcm.

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Bài 2:

a. Gọi $d=ƯCLN(n+1, n+2)$

$\Rightarrow n+1\vdots d; n+2\vdots d$

$\Rightarrow (n+2)-(n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau. 

b.

Gọi $d=ƯCLN(2n+2, 2n+3)$

$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$

$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.

Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.

5 tháng 1 2016

Ta có : k là ƯCLN của 7n + 10 và 5n + 7 
Vậy : 7n + 10 chia hết cho k ; 5n + 7 chia hết cho k 
Hay 5(7n + 10 ) và 7(5n + 7 ) 
      35n + 50 và 35n + 49 chia hết cho k 
=> ĐPCM 

Hai bài kia bạn làm tương tư nhé , chúc may mắn 

20 tháng 12 2022

Hi

 

13 tháng 1 2018

Vay a va b nguyen to cung nhau

10 tháng 2 2020

Bài giải

Ta có: a = 1 + 2 + 3 + 4 +...+ n;   b = 2n + 1 (n \(\inℕ\);   n > 2)

Suy ra a = \(\frac{n\left(n+1\right)}{2}\)(a chẵn vì n > 2);   b = 2n + 1 (b lẻ)

Vì n > 2

Nên a > 2 và b > 2

Mà a chẵn và b lẻ

Suy ra a không chia hết cho b và ngược lại

Vậy a và b là 2 số nguyên tố cùng nhau.

31 tháng 12 2018

 Ghi nhớ:nếu a và b nguyên tố cùng nhau thì a và b chỉ có ước chung là 1 
- gọi d là ước chung nếu có của cả a và b 
==> a chia hết cho d nên 8a cũng chia hết cho d 
đồng thời : b chia hết cho d nên b^2 cũng chia hết cho d ( b mũ 2 ) 
==> ( b^2 - 8.a ) chia hết cho d 
mà : a = 1 + 2 + 3 + ... + n = n ( n + 1 ) / 2 = ( n^2 + n ) /2 
và b^2 = ( 2n + 1 )^2 = 4n^2 + 4n + 1 
==> : (b^2 - 8a ) = ( 4n^2 + 4n +1 ) - ( 4n^2 + 4n ) = 1 
vậy : ( 8a -- b^2 ) chia hết cho d <==> 1 chia hết cho d => d = 1 
kl : ước chung của a và b là 1 nên a và b nguyên tố cùng nhau

31 tháng 12 2018

Tau trả lời rồi

mi coi câu hỏi trước đi :(

31 tháng 12 2018

\(A=1+2+3+4+....+n=\frac{\left(n+1\right)n}{2}\)

Gọi: d=UCLN(A,B)

Ta có:

\(\hept{\begin{cases}\frac{\left(n+1\right)n}{2}⋮d\\2n+1⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}n^2+n⋮d\\2n^2+n⋮d\end{cases}}\Leftrightarrow2n^2+n-n^2-n⋮d\Leftrightarrow n^2⋮d\)

\(\Leftrightarrow n^2+n-n^2⋮d\Leftrightarrow n⋮d\Leftrightarrow2n+1-2n⋮d\Leftrightarrow d=1\)

Vậy: A và B là 2 số nguyên tố cùng nhau