Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Để A là phân số thì 3n+3<>0
=>n<>-1
b: \(A=\dfrac{12n}{3\left(n+1\right)}=\dfrac{4n}{n+1}\)
Để A là số nguyên thì 4n+4-4 chia hết cho n+1
=>\(n+1\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(n\in\left\{0;-2;1;-3;3;-5\right\}\)
a: Để A là phân số thì 3n+3<>0
hay n<>-1
b: Để A là số nguyên thì \(4n⋮n+1\)
\(\Leftrightarrow n+1\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(n\in\left\{0;-2;1;-3;3;-5\right\}\)
a: A là phân số khi 3n+3<>0
=>n<>-1
b: \(A=\dfrac{12}{3\left(n+1\right)}=\dfrac{4}{n+1}\)
Để A nguyên thì \(n+1\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(n\in\left\{0;-2;1;-3;3;-5\right\}\)
Ta có A=12n-1/4n+3=12n+9-10/4n+3=3.(4n+3)-10/4n+3=3-10/4n+3
Để A đạt giá trị nhỏ nhất thì 10/4n+3 đạt giá trị lớn nhất
+4n+3>0=>10/4n+3>0=>3-10/4n+3<3
+4n+3<0=>10/4n+3<0=>3-10/4n+3>3
Để A đạt giá trị nhỏ nhất thì 10/4n+3 đạt giá trị lớn nhất
=>4n+3 là số nguyên dương lớn nhất
=>4n+3
=>4n=-4
n=-4:4
n=-1
Khi đó A nhỏ nhất
Vậy A=-1
Chúc bạn học tốt cho mình điểm nhé
a) \(A=\frac{3n+11}{n-2}\left(n\inℤ\right)\)
Để A là phân số thì n-2\(\ne\)0
<=> n\(\ne\)2
Vậy n\(\ne\)2 thì A là phân số
b) \(A=\frac{3n+11}{n-2}\left(n\ne2\right)\)
Để A có giá trị nguyên thì \(\frac{3n+11}{n-2}\)đạt giá trị nguyên
=> 3n+11\(⋮\)n-2
Ta có 3n+11=3(n-2)+17
Thấy n-2\(⋮n-2\Rightarrow3\left(n-2\right)⋮7\)
Vậy để 3(n-2)+17 \(⋮n-2\Rightarrow17⋮n-2\)
Có \(n\inℤ\Rightarrow n-2\inℤ\Rightarrow n-2\inƯ\left(17\right)=\left\{-17;-1;1;17\right\}\)
Ta có bảng
n-2 | -17 | -1 | 1 | 17 |
n | -15 | 1 | 3 | 19 |
Đối chiếu điều kiện ta được n={-15;1;3;19}
Vậy n={-15;1;3;19} thì A đạt giá trị nguyên