Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.\(A=\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{107.111}\)
\(=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{107}-\frac{1}{111}\)
\(=\frac{1}{3}-\frac{1}{111}=\frac{37}{111}-\frac{1}{111}=\frac{36}{111}=\frac{12}{37}\)
Vậy A=\(\frac{12}{37}\)
b.\(B=\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+...+\frac{2}{399}\)
\(=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{19.21}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{19}-\frac{1}{21}\)
\(=\frac{1}{3}-\frac{1}{21}=\frac{7}{21}-\frac{1}{21}=\frac{6}{21}=\frac{2}{7}\)
Vậy \(B=\frac{2}{7}\)
c.\(C=\frac{1}{10}+\frac{1}{15}+...+\frac{1}{120}\)
\(\Rightarrow C.\frac{1}{2}=\left(\frac{1}{10}+\frac{1}{15}+...+\frac{1}{120}\right).\frac{1}{2}\)
\(=\frac{1}{20}+\frac{1}{30}+...+\frac{1}{240}\)
\(=\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{15.16}\)
\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{15}-\frac{1}{16}\)
\(=\frac{1}{4}-\frac{1}{16}=\frac{4}{16}-\frac{1}{16}=\frac{3}{16}\)
Vậy \(C=\frac{3}{16}\)
A = \(\frac{4}{3.7}+\frac{4}{7.9}+...+\frac{4}{107.111}\)
A = \(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{107}-\frac{1}{111}\)
A = \(\frac{1}{3}-\frac{1}{111}\)=\(\frac{12}{37}\)
2 câu sau tương tự. Mik ngại làm lắm -_-
- \(B=\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+...+\frac{1}{93.97}\)
\(4.B=\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{93.97}\)
\(4.B=1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{93}-\frac{1}{97}\)
\(4.B=1-\frac{1}{97}\)
\(4.B=\frac{96}{97}\)
\(B=\frac{96}{97}:4\)
\(B=\frac{24}{97}\)
\(C=\dfrac{2}{15}+\dfrac{2}{35}+\dfrac{2}{63}+...+\dfrac{2}{399}\)
\(C=\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{19.21}\)
\(C=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{19}-\dfrac{1}{21}\)
\(C=\dfrac{1}{3}-\dfrac{1}{21}\)
\(C=\dfrac{2}{7}\)
\(A=\frac{1}{25.27}+\frac{1}{27.29}+\frac{1}{29.31}+...+\frac{1}{83.85}\)
\(\Rightarrow2A=\frac{2}{25.27}+\frac{2}{27.29}+\frac{2}{29.31}+...+\frac{2}{83.85}\)
\(2A=\frac{1}{25}-\frac{1}{27}+\frac{1}{27}-\frac{1}{29}+\frac{1}{29}-\frac{1}{31}+...+\frac{1}{83}-\frac{1}{85}\)
\(2A=\frac{1}{25}-\frac{1}{85}\)
\(2A=\frac{12}{425}\)
\(A=\frac{12}{425}:2\)
\(A=\frac{6}{425}\)
\(C=\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+...+\frac{2}{399}\)
\(C=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{19.21}\)
\(C=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{19}-\frac{1}{21}\)
\(C=\frac{1}{3}-\frac{1}{21}\)
\(C=\frac{2}{7}\)
CÂU B LÀM TƯƠNG TỰ NHA
HOK TOT
\(A=\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{120}\)
\(A=\frac{2}{20}+\frac{2}{30}+\frac{2}{42}+...+\frac{2}{240}\)
\(A=2.\left(\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{240}\right)\)
\(A=2.\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{15.16}\right)\)
\(A=2.\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{15}-\frac{1}{16}\right)\)
\(A=2.\left(\frac{1}{4}-\frac{1}{16}\right)\)
\(A=2.\frac{3}{16}\)
\(A=\frac{3}{8}\)
\(B=\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+...+\frac{2}{399}\)
\(B=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{19.21}\)
\(B=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{19}-\frac{1}{21}\)
\(B=\frac{1}{3}-\frac{1}{21}\)
\(B=\frac{2}{7}\)
\(A=\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+...+\frac{2}{399}\)
\(=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+....+\frac{2}{19.21}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{19}-\frac{1}{21}\)
\(=\frac{1}{3}-\frac{1}{21}\)
\(=\frac{6}{21}\)
\(a;\frac{1}{n}-\frac{1}{n-1}=\frac{n-1-n}{n\left(n-1\right)}=-\frac{1}{n\left(n-1\right)}\)
a) \(\frac{1}{n}-\frac{1}{n-1}=\frac{n-1-n}{n\left(n-1\right)}=-\frac{1}{n\left(n-1\right)}\)
b) \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}\)(cái này là 1 tính chất nha bn ! tìm hiểu thêm nhé )
c)đặt C= \(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+\frac{1}{11.13}\)
=> 2C = \(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{13}=\frac{1}{3}-\frac{1}{13}=\frac{10}{39}\)
=> C=5/39
d) Ý d) lm tương tự ý c nha
e) đặt E =\(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{100}}\)
=> 2E=\(1+\frac{1}{2}+...+\frac{1}{2^{99}}\)
lấy 2E-E =\(1+\frac{1}{2}+...+\frac{1}{2^{99}}-\frac{1}{2}-\frac{1}{2^2}-...-\frac{1}{2^{100}}=1-\frac{1}{2^{100}}\)
=.> E=1 - \(\frac{1}{2^{100}}\)
\(B=\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+...+\frac{2}{399}\)
\(B=\frac{2}{3×5}+\frac{2}{5×7}+\frac{2}{7×9}+...+\frac{2}{19×21}\)
\(B=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{19}-\frac{1}{21}\)
\(B=\frac{1}{3}-\frac{1}{21}\)
\(B=\frac{2}{7}\)
A=\(\frac{1}{3}\)+\(\frac{1}{6}\)+\(\frac{1}{10}\)+\(\frac{1}{15}\)+...+\(\frac{1}{66}\)
A=\(\frac{1}{1\cdot3}\) +\(\frac{1}{2\cdot3}\) +\(\frac{1}{2\cdot5}\)+...+\(\frac{1}{6\cdot11}\)
A=\(\frac{1}{1}-\frac{1}{3}+\frac{1}{2}-\frac{1}{3}+\frac{1}{2}-\frac{1}{5}+...+\frac{1}{6}-\frac{1}{11}\)
A=\(\frac{1}{1}-\frac{1}{11}\)
=>A=\(\frac{10}{11}\)
B=\(\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+...+\frac{2}{399}\)
2B=\(\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+...+\frac{1}{19\cdot21}\)
2B=\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{19}-\frac{1}{21}\)
2B=\(\frac{1}{3}-\frac{1}{21}\)
2B=\(\frac{2}{7}\)
B=\(\frac{2}{7}:2\)
=>B=\(\frac{1}{7}\)