Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=1+3+3^2+...+3^{98}\)
\(=\left(1+3+3^2\right)+...+3^{97}\left(1+3+3^2\right)\)
\(=13\cdot\left(1+...+3^{97}\right)⋮13\)
S=1+2+22+23+.....+297+298+299
S=20+2+22+23+.....+297+298+299
2S=2.(20+2+22+23+.....+297+298+299)
2S=21+22+23+24+....+298+299+2100
2S-S=(21+22+23+24+....+298+299+2100)-(20+2+22+23+.....+297+298+299)
S=2100-20
S=2100-1
bS=1+2+22+23+.....+297+298+299
S=(1+2)+(22+23)+...+(296+297)+(298+299)
S=(1+2)+22.(1+2)+........+296.(1+2)+298.(1+2)
S=3+22.3+....+296.3+298.3
S=3.(1+22+.....+296+298)\(⋮\)3
Vậy S\(⋮\)3
c Ta có:S=2100-1
2100=24.25=(24)25
Ta có: 24 tân cùng là 6
=>(24)25 tận cùng là 6
Hay 2100=(24)25 tận cùng là 6
=>2100-1 tận cùng là 5
Vậy S tận cùng là 5
Chúc bn học tốt
a, - A = 31 + 32 + 33 + ... + 3120
= (31+32) + (33+34) + ... + (3119+3120)
= (3+32) + 32(3+32) + ... + 3118(3+32)
= 12 + 32.12 + ... + 3118.12
= 12(1+32+34+...+3118) ⋮ 12 ⋮ 4
- A = 31 + 32 + 33 + ... + 3120
= (31+32+33) + (34+35+36) + ...+ (3118+3119+3120)
= (31+32+33) + 33(31+32+33) + ... + 3117(31+32+33)
= 39 + 33.39 + ... + 3117.39
= 39(1+33+36+...+3117) ⋮ 39 ⋮ 13
- Vì A chia hết cho 13 và 4. Mà ƯCLN(4,13) = 1 nên A chia hết cho (4.13) = 82
b,
Nhận thấy:
34n+1 = ...3 (theo quy tắc về chữ số tận cùng của một luỹ thừa, lên Youtube coi video của cô Huyền OLM)
=> 34n+2 = ...3.3 = ...9
34n+3 = ...9.3 = ...27 = ...7
34n = ...3: 3 = ...1
Mà 120: 4 = 30 (4 là số số luỹ thừa đc lặp lại)
=> A = (...3+...9+...7+...1).30 = ...0
Vậy CSTC của A là 0
c,
A = 31 + 32 + 33 + ... + 3120
=> 3A = 32 + 33 + 34 + ... + 3121
=> 3A - A = (32 + 33 + 34 + ... + 3121) - (31 + 32 + 33 + ... + 3120)
=> 2A = 3121 - 3
=> 2A + 3 = 3121
Vậy 2A + 3 là luỹ thừa của 3
a, \(A=3+3^2+...+3^{120}\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{119}\left(1+3\right)\)
\(=4\left(3+3^3+3^5+...+3^{119}\right)\)
\(\Rightarrow A⋮4\)
\(A=3+3^2+...+3^{120}\)
\(=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{118}\left(1+3+3^2\right)\)
\(=13\left(3+3^4+...+3^{118}\right)\)
\(\Rightarrow A⋮13\)
b, \(3A=3^2+3^3+...+3^{121}\)
\(\Rightarrow2A=3^{121}-3=3\left(3^{120}-1\right)\)
Vì \(3^{120}=3^{4.30}\) có chữ số tận cùng là 1 suy ra \(3^{120}-1\) có chữ số tận cùng là 0
\(\Rightarrow A=\dfrac{3\left(3^{120}-1\right)}{2}\) có chữ số tận cùng là 0
c, Đề là \(2A+3\) thì có vẻ hợp lí hơn
\(2A+3=3^{121}-3+3=3^{121}\) là lũy thừa của 3
1)
a)\(B=3+3^3+3^5+3^7+.....+3^{1991}\)
\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)
Vì \(3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)chia hết cho 3 nên \(B⋮3\)
\(B=3+3^3+3^5+3^7+.....+3^{1991}\)
\(\Leftrightarrow B=\left(3+3^3+3^5+3^7\right)+.....+\left(3^{1988}+3^{1989}+3^{1990}+3^{1991}\right)\)
\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6\right)+.....+3^{1988}\left(1+3^2+3^4+3^6\right)\)
\(\Leftrightarrow B=3.820+.....+3^{1988}.820\)
\(\Leftrightarrow B=3.20.41+.....+3^{1988}.20.41\)
Vì \(3.20.41+.....+3^{1988}.20.41\) chia hết cho 41 nên \(B⋮41\)