K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2017

giúp mình với

21 tháng 10 2017

Dễ mà bn , mình học dạng này òi

15 tháng 4 2016

3.2/1.3.2+3.2/3.5.2+3.2/5.7.2+...+3.2/49.51

3/2(2/1.3+2/3.5+2/5.7+....+2/49.51)

3/2(1-1/3+1/3-1/5+1/5-1/7+....+1/49-1/51)

3/2(1-1/51)

3/2  .    50/51

25/17

15 tháng 4 2016

áp dụng công thức nếu có thừa số thứ 2 ở mẫu trừ đi thừa số thứ 1 bằng số trên tử thi \(\frac{1}{a}-\frac{1}{b}\) ab ở đây là 2 thừa số ở mẫu

VD;3/1.3+3/3.5+...+3/49.51(vì tất cả mẫu trừ cho nhau đều =tử)

nên = 1/1-1/3+1/3+1/5+...+1/49-1/51

      =1-1/51

      =50/51

2 tháng 1 2018

19333333333333465667

11 tháng 5 2017

\(A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{51}\)

\(A=1-\frac{1}{51}\)

\(A=\frac{50}{51}\)

11 tháng 5 2017

\(A=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{49.51}\)

\(2A=3\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}\right)\)

\(2A=3\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)

\(2A=3\left(1-\frac{1}{51}\right)\)

\(2A=3.\frac{50}{51}\)

\(2A=\frac{50}{17}\Rightarrow A=\frac{25}{17}\)'

1 tháng 2 2016

A=3/(1.3) + 3/(3.5) + 3/(5.7) +.....+ 3/(49.51) 
A=3/2 . [2/(1.3) + 2/(3.5) + 2/(5.7) +.....+ 2/(49.51)] 
A=3/2 . (1/1 - 1/3 + 1/3 - 1/5 +1/5 - 1/7 +.....+ 1/49 -1/51) 
A=3/2 . (1/1 - 1/51) 
A=3/2 . 50/51 
A=25/17. 

giup minh nha 

12 tháng 4 2016
B=3.(1/1.3+1/3.5+1/5.7+...+1/49.51) B=3.(1/1-1/3+1/3-1/5+...+1/49-1/51) B=3.(1-1/51) B=3.50/51 B=50/17
18 tháng 6 2020

ta có A=3/1*3+3/3*5+3/5*7+...+3/49*51

=> A=3*1/2*(2/1*3+2/3*5+..+2/49*51)

=> A=3/2*(1-1/3+1/3-1/5+..+1/49-1/51)

=> A=3/2*(1-1/51)

=> A= 3/2* 50/51

=> A= 25/17 

17 tháng 7 2016

                           \(\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{49.51}\)

                 \(=\frac{2}{3}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\right)\)

                  \(=\frac{2}{3}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)

                   \(=\frac{2}{3}.\left(1-\frac{1}{51}\right)\)

                  \(=\frac{2}{3}.\frac{50}{51}=\frac{20}{51}\)

              Ủng hộ mk nha !!! ^_^

14 tháng 5 2021

25/17 mới đúng

25 tháng 4 2018

Ta có : 

\(A=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{49.51}\)

\(A=\frac{3}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\right)\)

\(A=\frac{3}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)

\(A=\frac{3}{2}\left(1-\frac{1}{51}\right)\)

\(A=\frac{3}{2}.\frac{50}{51}\)

\(A=\frac{25}{17}\)

Vậy \(A=\frac{25}{17}\)

Chúc bạn học tốt ~ 

25 tháng 4 2018

\(A=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{49.51}\)

\(A=\frac{3}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)

\(A=\frac{3}{2}\left(1-\frac{1}{51}\right)\)

\(A=\frac{3}{2}.\frac{50}{51}\)

\(A=\frac{25}{17}\)

\(B=\frac{21}{4}\left(\frac{3333}{1212}+\frac{3333}{2020}+\frac{3333}{3030}+\frac{3333}{4242}\right)\)

\(B=\frac{21}{4}\left(\frac{33}{12}+\frac{33}{20}+\frac{33}{30}+\frac{33}{42}\right)\)

\(B=\frac{21}{4}\left(\frac{33}{3.4}+\frac{33}{4.5}+\frac{33}{5.6}+\frac{33}{6.7}\right)\)

\(B=\frac{21}{4}.33.\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)

\(B=\frac{21}{4}.33.\left(\frac{1}{3}-\frac{1}{7}\right)\)

\(B=\frac{21}{4}.33.\frac{4}{21}\)

\(B=\left(\frac{21}{4}.\frac{4}{21}\right).33\)

\(B=33\)

\(C=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)

\(C=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)

\(C=\frac{1}{2}\left(1-\frac{1}{99}\right)\)

\(C=\frac{1}{2}.\frac{98}{99}\)

\(C=\frac{49}{99}\)

7 tháng 8 2016

\(A=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{49.51}\)

\(A=\frac{3}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\right)\)

\(A=\frac{3}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)

\(A=\frac{3}{2}.\left(1-\frac{1}{51}\right)\)

\(A=\frac{3}{2}.\frac{50}{51}=\frac{25}{17}\)

7 tháng 8 2016

\(A=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{49.51}\)

\(A=3.\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{49}-\frac{1}{50}\right)\)

\(A=\frac{3}{2}\left(1-\frac{1}{50}\right)\)

\(A=\frac{3}{2}.\frac{49}{50}\)

\(A=\frac{147}{100}\)