K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2019

\(A=\left(1+\frac{1}{3}\right)\left(1+\frac{1}{8}\right).....\left(1+\frac{1}{9999}\right)\)

\(=\frac{4}{3}.\frac{9}{8}.....\frac{10000}{9999}\)

\(=\frac{2.2}{1.3}.\frac{3.3}{2.4}.....\frac{100.100}{99.101}\)

\(=\frac{2.3.....100}{1.2.....99}.\frac{2.3.....100}{3.4.....101}\)

=\(=100.\frac{2}{101}=\frac{200}{101}\)

11 tháng 7 2019

\(A=\left(1+\frac{1}{3}\right)\left(1+\frac{1}{8}\right)\left(1+\frac{1}{15}\right).....\left(1+\frac{1}{9999}\right)\)

    \(=\frac{4}{3}.\frac{9}{8}.\frac{16}{15}......\frac{10000}{9999}\)

     \(=\frac{2.2}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}.....\frac{100.100}{99.101}\)

       \(=\frac{2.3.4....100}{1.2.3....99}.\frac{2.3.4.....100}{3.4.5.....101}\)

         \(=100.\frac{2}{101}\)

          \(=\frac{200}{101}\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Đáp án đúng là: A

Dãy số 21; – 3; – 27; – 51; – 75 lập thành một cấp số cộng có số hạng đầu là u1 = 21 và công sai d = – 24.

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Ta có \(\cos 2a = 2{\cos ^2}a - 1 = 2.{\left( {\frac{1}{4}} \right)^2} - 1 = \frac{{ - 7}}{8}\)

Chọn B

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

\({\left( {\frac{1}{{16}}} \right)^{\frac{\alpha }{8}}} = {\left( {{2^{ - 4}}} \right)^{\frac{\alpha }{8}}} = {2^{ - 4.\frac{\alpha }{8}}} = {2^{ - \frac{1}{2}\alpha }} = {\left( {{2^\alpha }} \right)^{ - \frac{1}{2}}} = {9^{ - \frac{1}{2}}} = \frac{1}{3}\)

Chọn A.

a: \(\left(\dfrac{1}{5}\right)^{-2}=25\)

b: \(4^{\dfrac{3}{2}}=8\)

c: \(\left(\dfrac{1}{8}\right)^{-\dfrac{2}{3}}=\left(\dfrac{1}{2}\right)^{3\cdot\dfrac{-2}{3}}=\left(\dfrac{1}{2}\right)^{-2}=4\)

d: \(\left(\dfrac{1}{16}\right)^{-0.75}=\left(\dfrac{1}{2}\right)^{4\cdot\left(-0.75\right)}=\left(\dfrac{1}{2}\right)^{-3}=8\)

NV
23 tháng 2 2020

\(A=lim\frac{\sqrt{n+2}+\sqrt{n+1}}{1}=lim\left[n\left(\sqrt{1+\frac{2}{n}}+\sqrt{1+\frac{1}{n}}\right)\right]=+\infty.2=+\infty\)

\(B=lim\frac{8^3.64^n-9.27^n}{4^4.64^n+5^3.25^n}=\frac{8^3-9.\left(\frac{27}{64}\right)^n}{4^4+5^3\left(\frac{25}{64}\right)^n}=\frac{8^3}{4^4}=2\)

\(1;-\frac{1}{2};\frac{1}{4}...\) là dãy cấp số nhân lùi vô hạn có \(u_1=1\)\(q=-\frac{1}{2}\)

Do \(\left|q\right|< 1\) nên theo công thức tổng cấp số nhân:

\(S_n=\frac{u_1}{1-q}=\frac{1}{1+\frac{1}{2}}=\frac{2}{3}\)

22 tháng 2 2020

câu tính tổng S mk làm đc oy nhé k cần lm câu đó nữa đâu

18 tháng 8 2023

a) \(a^{\dfrac{1}{3}}\cdot a^{\dfrac{1}{2}}\cdot a^{\dfrac{7}{6}}=a^{\dfrac{1}{3}+\dfrac{1}{2}+\dfrac{7}{6}}=a^2\)

b) \(a^{\dfrac{2}{3}}\cdot a^{\dfrac{1}{4}}:a^{\dfrac{1}{6}}=a^{\dfrac{2}{3}+\dfrac{1}{4}-\dfrac{1}{6}}=a^{\dfrac{3}{4}}\)

c) \(\left(\dfrac{3}{2}a^{-\dfrac{3}{2}}\cdot b^{-\dfrac{1}{2}}\right)\left(-\dfrac{1}{3}a^{\dfrac{1}{2}}b^{\dfrac{2}{3}}\right)=\left(\dfrac{3}{2}\cdot-\dfrac{1}{3}\right)\left(a^{-\dfrac{3}{2}}\cdot a^{\dfrac{1}{2}}\right)\left(b^{-\dfrac{1}{2}}\cdot b^{\dfrac{2}{3}}\right)\)

\(=-\dfrac{1}{2}a^{-1}b^{-\dfrac{1}{3}}\)

4 tháng 3 2020
Sao bạn gi được phân số vậy
QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

a) \( - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + ... + {\left( { - \frac{1}{2}} \right)^n} + ...\)

Tổng trên là tổng của cấp số nhân lùi vô hạn có số hạng đầu \({u_1} =  - \frac{1}{2}\) và công bội \(q =  - \frac{1}{2}\) nên: \( - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + ... + {\left( { - \frac{1}{2}} \right)^n} + ... = \frac{{ - \frac{1}{2}}}{{1 - \left( { - \frac{1}{2}} \right)}} =  - \frac{1}{3}\)

b) \(\frac{1}{4} + \frac{1}{{16}} + \frac{1}{{64}} + ... + {\left( {\frac{1}{4}} \right)^n} + ...\)

Tổng trên là tổng của cấp số nhân lùi vô hạn có số hạng đầu \({u_1} = \frac{1}{4}\) và công bội \(q = \frac{1}{4}\) nên: \(\frac{1}{4} + \frac{1}{{16}} + \frac{1}{{64}} + ... + {\left( {\frac{1}{4}} \right)^n} + ... = \frac{{\frac{1}{4}}}{{1 - \frac{1}{4}}} = \frac{1}{3}\)