Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=3+3^2+3^3+...+3^{20}\)
\(A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{19}+3^{20}\right)\)
\(A=3\left(1+3\right)+3^3\left(3+1\right)+...+3^{19}\left(1+3\right)\)
\(\Rightarrow A=4\left(3+3^3+...+3^{19}\right)\)
\(\Rightarrow A⋮4\)
\(\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{2}+\frac{3}{4}+\frac{3}{4}\right)-2=?\)
\(\frac{3}{10}\)x \((\frac{-5}{9}+\frac{3}{5})\)\(+\frac{3}{10}x\)\((\frac{-4}{9}+\frac{2}{5})\)= \(\frac{3}{10}x\)\((\frac{-2}{45})\)+ \(\frac{3}{10}x\) \(\times\frac{2}{45}\)= \(\frac{3}{10}x\left(\frac{-2}{45}+\frac{2}{45}\right)\)= \(\frac{3}{10}x\times0\)= 0
Chúc bạn học tốt !
\(A=2^0+\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\)
\(A=1+2\left(1+2\right)+2^3\left(1+2\right)+...+2^{99}\left(1+2\right)\)
\(A=1+3\left(2+2^3+2^5+...+2^{99}\right)\)
A chia 3 dư 1
a) =3/11(-5/12+-7/12)-4/15
= 3/11.(-1)-4/15
=(-3)/11-4/15
=-89/165
a)
\(=\frac{3}{11}\left(\frac{-5}{12}+\frac{-7}{12}\right)-\frac{4}{15}\)
\(=\frac{3}{11}\left(\frac{-12}{12}\right)-\frac{4}{15}\)
\(=\frac{3}{11}\left(-1\right)-\frac{4}{15}\)
\(=\frac{3}{11}-\frac{4}{15}\)
\(=\frac{-89}{165}.\)
tính tổng á :
\(A=3+3^2+3^3+3^4+...+3^{20}.\)
\(\Rightarrow3A=3^2+3^3+3^4+...3^{20}+3^{21}\)
\(\Rightarrow3A-A=\left(3^2+3^3+..+3^{21}\right)-\left(3+3^2+....+3^{20}\right)\)
\(\Rightarrow2A=3^{21}-1\)
\(\Rightarrow A=\frac{3^{21}-1}{2}\)
Chứng tỏ bạn nhé
Dung minh ch k