K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9 2016

a)\(\orbr{\begin{cases}5x-1=3\\5x-1=-3\end{cases}}\Leftrightarrow\orbr{\begin{cases}5x=4\\5x=-2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{4}{5}\\x=\frac{-2}{5}\end{cases}}\)

b) 2x+1=-0,1 <=> 2x=-1,1=>x=-0,55

c) (2x-3)4 .[1-(2x-3)2 ]=0

do (2x-3)4 lớn hơn 0 nên 1-(2x-3)2=0=>(2x-3)2=1=>2x-3=1=>2x=4=>x=2

d) tương tự câu c)

7 tháng 9 2016

a) 5x-1=3 hoặc 5x-1=-3 sau đo tính ra

31 tháng 10 2015

a,(5x-1)6=36

5x-1=3

x=4/5

b,(2x+1)3=0,13

2x+1=0,1

x=-0,45

c,(2x-3)4=(2x-3)4(2x-3)2

(2x-3)2=0

2x-3=0

x=3/2

d,(2x+1)5=(2x+1)5(2x+1)2005

(2x+1)2005=0

2x+1=0

x=-1/2

22 tháng 9 2018

* Trả lời:

\(\left(1\right)\) \(-3\left(1-2x\right)-4\left(1+3x\right)=-5x+5\)

\(\Leftrightarrow-3+6x-4-12x=-5x+5\)

\(\Leftrightarrow6x-12x+5x=3+4+5\)

\(\Leftrightarrow x=12\)

\(\left(2\right)\) \(3\left(2x-5\right)-6\left(1-4x\right)=-3x+7\)

\(\Leftrightarrow6x-15-6+24x=-3x+7\)

\(\Leftrightarrow6x+24x+3x=15+6+7\)

\(\Leftrightarrow33x=28\)

\(\Leftrightarrow x=\dfrac{28}{33}\)

\(\left(3\right)\) \(\left(1-3x\right)-2\left(3x-6\right)=-4x-5\)

\(\Leftrightarrow1-3x-6x+12=-4x-5\)

\(\Leftrightarrow-3x-6x+4x=-1-12-5\)

\(\Leftrightarrow-5x=-18\)

\(\Leftrightarrow x=\dfrac{18}{5}\)

\(\left(4\right)\) \(x\left(4x-3\right)-2x\left(2x-1\right)=5x-7\)

\(\Leftrightarrow4x^2-3x-4x^2+2x=5x-7\)

\(\Leftrightarrow-x-5x=-7\)

\(\Leftrightarrow-6x=-7\)

\(\Leftrightarrow x=\dfrac{7}{6}\)

\(\left(5\right)\) \(3x\left(2x-1\right)-6x\left(x+2\right)=-3x+4\)

\(\Leftrightarrow6x^2-3x-6x^2-12x=-3x+4\)

\(\Leftrightarrow-15x+3x=4\)

\(\Leftrightarrow-12x=4\)

\(\Leftrightarrow x=-\dfrac{1}{3}\)

27 tháng 6 2019

Noob ơi, bạn phải đưa vào máy tính ý solve cái là ra x luôn, chỉ tội là đợi hơi lâu

27 tháng 6 2019

a, 4.(18 - 5x) - 12(3x - 7) = 15(2x - 16) - 6(x + 14) 

=> 72 - 20x - 36x + 84 = 30x - 240 - 6x - 84

=> (72 + 84) + (-20x - 36x) = (30x - 6x) + (-240 - 84) 

=> 156 -  56x = 24x - 324 

=>  24x + 56x = 324 + 156 

=> 80x = 480 

=> x = 480 : 80 =  6 

Vậy x = 6 

18 tháng 3 2023

\(a,\left|5x-\dfrac{1}{6}\right|-2x=12\)

\(\Leftrightarrow\left|5x-\dfrac{1}{6}\right|=12+2x\)

\(\Leftrightarrow\left[{}\begin{matrix}5x-\dfrac{1}{6}=12+2x\\5x-\dfrac{1}{6}=-\left(12+2x\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}5x-\dfrac{1}{6}=12+2x\\5x-\dfrac{1}{6}=-12-2x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3x=\dfrac{73}{6}\\7x=-\dfrac{71}{6}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{73}{18}\\x=-\dfrac{71}{42}\end{matrix}\right.\)

\(b,\left|7x-\dfrac{4}{3}\right|-\dfrac{3}{2}x=7\)

\(\Leftrightarrow\left|7x-\dfrac{4}{3}\right|=7+\dfrac{3}{2}x\)

\(\Leftrightarrow\left[{}\begin{matrix}7x-\dfrac{4}{3}=7+\dfrac{3}{2}x\\7x-\dfrac{4}{3}=-7-\dfrac{3}{2}x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{11}{2}x=\dfrac{25}{3}\\\dfrac{17}{2}x=-\dfrac{17}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{50}{33}\\x=-\dfrac{2}{3}\end{matrix}\right.\)

a: \(=\dfrac{2x^4+x^3-5x^2-3x-3}{x^2-3}\)

\(=\dfrac{2x^4-6x^2+x^3-3x+x^2-3}{x^2-3}\)

\(=2x^2+x+1\)

b: \(=\dfrac{x^5+x^2+x^3+1}{x^3+1}=x^2+1\)

c: \(=\dfrac{2x^3-x^2-x+6x^2-3x-3+2x+6}{2x^2-x-1}\)

\(=x+3+\dfrac{2x+6}{2x^2-x-1}\)

d: \(=\dfrac{3x^4-8x^3-10x^2+8x-5}{3x^2-2x+1}\)

\(=\dfrac{3x^4-2x^3+x^2-6x^3+4x^2-2x-15x^2+10x-5}{3x^2-2x+1}\)

\(=x^2-2x-5\)

a: \(=2x^3:\dfrac{-3}{2}x+4x:\dfrac{3}{2}x-5:\dfrac{3}{2}\)

=-4/3x^2+8/3-10/3

=-4/3x^2-2/3

d: \(\dfrac{3x^3-5x+2}{x-3}=\dfrac{3x^3-9x^2+9x^2-27x+22x-66+68}{x-3}\)

\(=3x^2+9x+22+\dfrac{68}{x-3}\)

17 tháng 9 2023

a) \(({x^2} + 2x + 3) + (3{x^2} - 5x + 1) = ({x^2} + 3{x^2}) + (2x - 5x) + (3 + 1) = 4{x^2} - 3x + 4\);        

b) \(\begin{array}{l}(4{x^3} - 2{x^2} - 6) - ({x^3} - 7{x^2} + x - 5) = 4{x^3} - 2{x^2} - 6 - {x^3} + 7{x^2} - x + 5\\ = (4{x^3} - {x^3}) + ( - 2{x^2} + 7{x^2}) - x + ( - 6 + 5) = 3{x^3} + 5{x^2} - x - 1\end{array}\);

c) \(\begin{array}{l} - 3{x^2}(6{x^2} - 8x + 1) =  - 3{x^2}.6{x^2} -  - 3{x^2}.8x +  - 3{x^2}.1\\ =  - 18{x^{2 + 2}} + 24{x^{2 + 1}} - 3{x^2} =  - 18{x^4} + 24{x^3} - 3{x^2}\end{array}\);               

d) \(\begin{array}{l}(4{x^2} + 2x + 1)(2x - 1) = (4{x^2} + 2x + 1).2x - (4{x^2} + 2x + 1).1 = 4{x^2}.2x + 2x.2x + 1.2x - 4{x^2} - 2x - 1\\ = 8{x^{2 + 1}} + 4{x^{1 + 1}} + 2x - 4{x^2} - 2x - 1 = 8{x^3} + 4{x^2} + 2x - 4{x^2} - 2x - 1 = 8{x^3} - 1\end{array}\);

e) \(\begin{array}{l}({x^6} - 2{x^4} + {x^2}):( - 2{x^2}) = {x^6}:( - 2{x^2}) - 2{x^4}:( - 2{x^2}) + {x^2}:( - 2{x^2})\\ =  - \dfrac{1}{2}{x^{6 - 2}} + {x^{4 - 2}} - \dfrac{1}{2}{x^{2 - 2}} =  - \dfrac{1}{2}{x^4} + {x^2} - \dfrac{1}{2}.\end{array}\);  

g) 

 \(({x^5} - {x^4} - 2{x^3}):({x^2} + x)=x^3-2x^2\)