Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(97\cdot13+130\cdot0,3\)
\(=97\cdot13+13\cdot3\)
\(=13\cdot\left(97+3\right)\)
\(=13\cdot100\)
\(=1300\)
b) \(86\cdot153-530\cdot8,6\)
\(=86\cdot153-53\cdot86\)
\(=86\cdot\left(153-53\right)\)
\(=86\cdot100\)
\(=8600\)
a) \(97.13+130.0,3\)
\(=97.13+13.3\)
\(=13\left(97+3\right)=13.100=1300\)
b) \(86.153-530.8,6\)
\(=86.153-53.86\)
\(=86.\left(153-53\right)=86.100=8600\)
a. 97 . 13 + 130 . 0,3 = 97 . 13 + 13 . 10 . 0,3
= 97 . 13 + 13 . 3
= 13 . ( 97 + 3 )
= 13 . 100
= 1300
b. 86 . 153 - 530 . 8,6 = 86 . 153 - 53 . 10 .8,6
= 86 . 153 - 53 .86
= 86 ( 153 - 53 )
= 86 . 100
= 8600
Bài làm
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
97 x 13 + 130 x 0,3
= 97 x 13 + 13 x 3
= 13 x (97 + 3)
= 13 x 100 = 1300
a, Ta có : \(\frac{x+2}{89}+\frac{x+5}{86}=\frac{x+8}{83}+\frac{x+11}{80}\)
=> \(\frac{x+2}{89}+1+\frac{x+5}{86}+1=\frac{x+8}{83}+1+\frac{x+11}{80}+1\)
=> \(\frac{x+91}{89}+\frac{x+91}{86}=\frac{x+91}{83}+\frac{x+91}{80}\)
=> \(\frac{x+91}{89}+\frac{x+91}{86}-\frac{x+91}{83}-\frac{x+91}{80}=0\)
=> \(\left(x+91\right)\left(\frac{1}{89}+\frac{1}{86}-\frac{1}{83}-\frac{1}{80}\right)=0\)
=> \(x+91=0\)
=> \(x=-91\)
Vậy phương trình trên có nghiệm là \(S=\left\{-91\right\}\)
b, Ta có : \(\frac{x-11}{99}+\frac{x-12}{98}=\frac{x-3}{97}+\frac{x-4}{96}\)
=> \(\frac{x-11}{99}-1+\frac{x-12}{98}-1=\frac{x-3}{97}-1+\frac{x-4}{96}-1\)
=> \(\frac{x-110}{99}+\frac{x-110}{98}=\frac{x-110}{97}+\frac{x-110}{96}\)
=> \(\frac{x-110}{99}+\frac{x-110}{98}-\frac{x-110}{97}-\frac{x-110}{96}=0\)
=> \(\left(x-110\right)\left(\frac{1}{99}+\frac{1}{98}-\frac{1}{97}-\frac{1}{96}\right)=0\)
=> \(x-110=0\)
=> \(x=110\)
Vậy phương trình trên có nghiệm là \(S=\left\{110\right\}\)
Ta có:
\(\left(a-1\right)\left(b-1\right)\left(c-1\right)=abc-\left(ab+bc+ca\right)+\left(a+b+c\right)-1\)
\(=abc-\left(ab+bc+ca\right)+5\ge0\)
\(\Rightarrow abc\ge ab+bc+ca-5\)(1)
\(\left(a-3\right)\left(b-3\right)\left(c-3\right)=abc-3\left(ab+bc+ca\right)+9\left(a+b+c\right)-27\)
\(=abc-3\left(ab+bc+ca\right)+27\le0\)
\(\Rightarrow abc\le3\left(ab+bc+ca\right)-27\)(2)
(1)(2) suy ra \(ab+bc+ca-5\le3\left(ab+bc+ca\right)-27\)
\(\Leftrightarrow ab+bc+ca\ge11\).
\(6^2=\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2=36-2\left(ab+bc+ca\right)\le36-2.11=14\)
Dấu \(=\)khi \(\hept{\begin{cases}\left(a-1\right)\left(b-1\right)\left(c-1\right)=0\\\left(a-3\right)\left(b-3\right)\left(c-3\right)=0\\a+b+c=6\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\\c=3\end{cases}}\)và các hoán vị.
a,
\(97.13+130.0,3=13.(97+10.0,3)=13.100=1300\)
b,
\(86.153-530.86= -377.86=-32422\)