K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2018

Đặt:

\(L=\sqrt{a+2009}+\sqrt{b+2009}+\sqrt{c+2009}\)

\(L^2=\left(\sqrt{a+2009}+\sqrt{b+2009}+\sqrt{c+2009}\right)^2\)

\(\le\left(1^2+1^2+1^2\right)\left(a+b+c+6027\right)\) (bđt bunhiacopxki)

\(=3\left(2+6027\right)=18087\Leftrightarrow A\le\sqrt{18087}\)

p/s: đề đã fix vì t thấy số qá to:v

8 tháng 9 2019

Bài này trông quen quen. em xí một vé trước nhá:) khi nào đi công việc về suy nghĩ rồi sẽ làm:) Em ko hứa là làm được nhưng hứa sẽ suy nghĩ cùng a:D

8 tháng 9 2019

\(\sqrt{\frac{a+b}{c}}+\sqrt{\frac{b+c}{a}}+\sqrt{\frac{c+a}{b}}\ge\sqrt{\frac{6\left(a+b+c\right)}{\sqrt[3]{abc}}}\)

____________________

Điều cần chứng minh tương đương với

\(\Leftrightarrow\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}+2\left(\sum_{cyc}\sqrt{\frac{\left(a+b\right)\left(b+c\right)}{ca}}\right)\ge\frac{6\left(a+b+c\right)}{\sqrt[3]{abc}}\)

Theo BĐT AM-GM ta có: \(\frac{a}{b}+\frac{a}{c}+1\ge3\frac{a}{\sqrt[3]{abc}}\)

Tương tự rồi cộng theo vế ta có \(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}+3\ge\frac{3\left(a+b+c\right)}{\sqrt[3]{abc}}\)

\(\rightarrow\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\ge\frac{2\left(a+b+c\right)}{\sqrt[3]{abc}}\)

Vậy còn cần chứng minh \(\sum_{cyc}\sqrt{\frac{\left(a+b\right)\left(b+c\right)}{ca}}\ge\frac{2\left(a+b+c\right)}{\sqrt[3]{abc}}\)

\(\Leftrightarrow\sum_{cyc}\sqrt{a\left(a+b\right)\left(a+c\right)}\ge\frac{2\left(a+b+c\right)\sqrt{abc}}{\sqrt[3]{abc}}\)

\(\text{L.H.S}=\sum_{cyc}\sqrt{a\left(a+b\right)\left(a+c\right)}=\sum_{cyc}\sqrt{a^2(a+b+c)+abc}\)

\(=\sqrt{\sum_{cyc}\left(a^2(a+b+c)+abc+2\sqrt{(a^2(a+b+c)+abc)(b^2(a+b+c)+abc)}\right)}\)

\(\ge\sqrt{\sum_{cyc}\left(a^2(a+b+c)+abc+2(ab(a+b+c)+abc)\right)}\)

\(=\sqrt{\sum_{cyc}(a^3+3a^2b+3a^2c+5abc)}\)

Đặt \(\left(a+b+c,ab+bc+ca,abc\right)\rightarrow\left(3u,3v^2,w^3\right)\) Khi đó còn phải cm

\(27u^3+9w^3\ge36u^2w\rightarrow f'\left(w^3\right)=9-\frac{12u^2}{\left(w^3\right)^{\frac{2}{3}}}\le0\) . Từ đó ta khẳng định được f là hàm lõm -> f nhận 1 GTLN của \(w^3\)

BĐT cần chứng minh thuần nhất từ đó ta có thể giả sử \(b=c=1\)

Đặt \(a=t^3\) và sau khi phân tích ta có:

\((t-1)^2(t+2)(t^6-t^4+4t^3-3t^2-2t+4)\ge0.\)\(\square\)

28 tháng 3 2021

Áp dụng BĐT BSC:

\(\dfrac{a^2}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{c+a}\ge\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}\)

\(=\dfrac{a+b+c}{2}\)

\(\ge\dfrac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}=\dfrac{1}{2}\)

Đẳng thức xảy ra khi \(a=b=c=\dfrac{1}{3}\)

NV
20 tháng 6 2020

Bạn tham khảo:

Câu hỏi của Nguyễn Bảo Trân - Toán lớp 9 | Học trực tuyến

AH
Akai Haruma
Giáo viên
24 tháng 6 2020

Lời giải:

Áp dụng BĐT AM-GM:

\(\frac{a^2}{b}=\frac{a^2-ab+b^2}{b}+a-b=\frac{a^2-ab+b^2}{b}+b+(a-2b)\geq 2\sqrt{a^2-ab+b^2}+(a-2b)\)

Tương tự:

\(\frac{b^2}{c}\geq 2\sqrt{b^2-bc+c^2}+(b-2c)\)

\(\frac{c^2}{a}\geq 2\sqrt{c^2-ca+a^2}+(c-2a)\)

Cộng theo vế:
\(\sum \frac{a^2}{b}\geq 2\sum \sqrt{a^2-ab+b^2}-(a+b+c)(1)\)

Mà theo BĐT AM-GM:

\(\sqrt{a^2-ab+b^2}=\sqrt{(a+b)^2-3ab}\geq \sqrt{(a+b)^2-\frac{3}{4}(a+b)^2}=\frac{a+b}{2}\)

\(\Rightarrow \sum \sqrt{a^2-ab+b^2}\geq \sum \frac{a+b}{2}=a+b+c(2)\)

Từ $(1);(2)\Rightarrow \sum \frac{a^2}{b}\geq \sum \sqrt{a^2-ab+b^2}$ (đpcm)

Dấu "=" xảy ra khi $a=b=c$