Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xin chào bạn. Rất vui đc làm quen với bạn. Chúc bạn chăm chỉ học tập như hiện tại nhé!!
Ta có \(\widehat{A}=90^0\Rightarrow\Delta ABC\) vuông tại \(A\)
\(a,\widehat{C}=90^0-\widehat{B}=30^0\\ AC=\tan B\cdot AB=\tan60^0\cdot8=8\sqrt{3}\left(cm\right)\\ BC=\dfrac{AB}{\sin C}=\dfrac{8}{\sin30^0}=16\left(cm\right)\\ b,S_{ABC}=\dfrac{1}{2}AB\cdot AC=\dfrac{1}{2}\cdot8\cdot8\sqrt{3}=32\sqrt{3}\left(cm^2\right)\)
\(a,AC=\sqrt{BC^2-AB^2}=3\sqrt{3}\left(cm\right)\\ \sin B=\dfrac{AC}{BC}=\dfrac{\sqrt{3}}{2}=\sin60^0\\ \Rightarrow\widehat{B}=60^0\\ \Rightarrow\widehat{C}=30^0\)
dễ thấy Sabc =\(\frac{1}{2}\) AB.AC.sinA; Sade= \(\frac{1}{2}\)AD.AE.sinA
=> Sabc/Sade=ad.ae/ab.ac
de//bc thì \(\frac{AD}{AB}=\frac{DE}{BC}=>\frac{BD}{AB}=\frac{BC-DE}{BC}=>BD=\frac{AB\left(BC-DE\right)}{BC}\)
SBDE = \(\frac{1}{2}BD.DEsin\widehat{BDE}=\frac{1}{2}\frac{AB\left(BC-DE\right)}{BC}.DE.cos\widehat{ABC}=\)\(\frac{AB.cos\widehat{ABC}}{2BC}\left(BC.DE-DE^2\right)\)
BC.DE - DE2 = \(\frac{BC^2}{4}-\)(\(\frac{BC}{2}-DE\))2 \(\le\frac{BC^2}{4}\)
vậy SBDE đạt GTLN khi DE= \(\frac{BC}{2}\)hay \(\frac{DE}{BC}=\frac{1}{2}=\frac{AD}{AB}\) hay D là trung điểm AB