Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Do AD // FM nên \(\widehat{BAD}=\widehat{AFE}\) (Hai góc đồng vị)
Cũng do AD // FM nên \(\widehat{DAC}=\widehat{AEF}\) (Hai góc so le trong)
AD là phân giác nên \(\widehat{BAD}=\widehat{DAC}\)
Vậy nên \(\widehat{AEF}=\widehat{AFE}\)
b) Ta thấy \(\widehat{MEC}=\widehat{AEF}\) (Hai góc đối đỉnh)
Mà \(\widehat{AEF}=\widehat{AFE}\) (cma)
Vậy nên \(\widehat{MEC}=\widehat{AFE}\).
Bài làm
~ Mik hỗ trợ làm bài, chú chả bảo anh làm bài này cho :< Giận thật sự :< ~
a) Xét tam giác ABD và tam giác AHD có:
AB = AH ( gt )
^BAD = ^CAD ( Do AD phân giác )
AD chung
=> Tam giác ABD = tam giác AHD ( c.g.c )
=> ^ABD = ^AHB ( hai góc tương ứng )
b) Xét tam giác AHE và tam giác ABC có:
AB = AH ( gt )
^ABC chung
^ABD = ^AHD ( cmt )
=> Tam giác AHE = tam giác ABC ( g.c.g )
c) Vì tam giác ABD = tam giác AHD ( cmt )
=> BD = DH ( hai cạnh tương ứng )
Vì tam giác AHE = tam giác ABC
=> EH = BC ( hai cạnh tương ứng )
Ta có: BD + DC = BC
DH + ED = EH
Mà EH = BC, BD = DH ( cmt )
=> DC = ED (1)
~ Tự chứng minh tiếp, bài khá gắt ~
Vì \(\widehat{ABD}=\widehat{BAM}\)(AM//BD; so le trong)
mà \(\widehat{ADB}=\widehat{MAC}\)(AM//BD; đồng vị)
mà \(\widehat{BAM}=\widehat{MAC}\)(AM là phân giác của \(\widehat{BAC}\))
nên\(\widehat{ABD}=\widehat{ADB}\)