Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu a)
nhân cả 3 phương trình
ta được
\(x^2y^2z^2=6\left(x+y-z\right)\left(x-y+z\right)\left(y-x+z\right)\)
Vế trái là 1 số chính phương nên Vp cũng là số chính phương
6 không phải là số chính phương nên
\(\left(x+y-z\right)\left(x-y+z\right)\left(y-x+z\right)\)=6
lập bảng
đặt x+y-z=1 ; x-y+z=2; y-x+z=3 giải ra và tương tự xét các cái còn lại (hơi lâu) nhớ xét thêm cái âm nữa
câu b)
từ hpt =>5y+3=11z+7
<=>\(y=\frac{11z+4}{5}\)>0 với mọi y;z thuộc R
y nguyên dương nên (11z+4)thuộc bội(5) và z_min
=> z=1
=> y=3
=> x =18 (t/m)
câu c)
qua pt (1) =>x=20-2y-3z
thay vao 2) <=> y+5z=23
y;z là nguyên dương mà 5z chia hêt cho 5
=> z={1;2;3;4}
=> y={18;13;8;3}
=> x={-19;-12;-5;2} đoạn này bạn làm từng GT của z nhé
chọn x=2; y=3; z=4 (t/m)
Nếu có sai sót hãy báo lại qua gmail: tiendung230103@gmail.com
hệ pt trên tương đương:\(\hept{\begin{cases}x=3-ky\\k\times\left(3-ky\right)+4y=6\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=3-ky\\-y\left(k^2-4\right)=6-3k\end{cases}}\)
*với k=2 ,hệ pt có vô số nghiệm.*với x=-2,hệ pt vô nghiệm.* với \(x\ne\pm2,\)hệ pt tương đương:
\(\hept{\begin{cases}x=3-ky\\y=\frac{6-3k}{-\left(k^2-4\right)}\end{cases}\Leftrightarrow\hept{\begin{cases}x=3-ky\\y=\frac{3}{k+2}\end{cases}}}\)\(\Leftrightarrow\hept{\begin{cases}x=3-\frac{3k}{k+2}\\y=\frac{3}{k+2}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{6}{k+2}\\y=\frac{3}{k+2}\end{cases}}\)
vậy \(\hept{\begin{cases}x>1\\y>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{6}{k+2}>1\\\frac{3}{k+2}>0\end{cases}\Leftrightarrow\hept{\begin{cases}k+2< 6\\k+2>0\end{cases}}}\)\(\Leftrightarrow-2< k< 4\)
VẬY HỆ PHƯƠNG TRÌNH ĐÃ CHO CÓ NGHIỆM X>1,Y>O KHI VÀ CHỈ KHI -2<K<4 VÀ K\(\ne2\)
a) Ta có hệ phương trình \(\hept{\begin{cases}kx-y=5\\x+y=1\end{cases}}\) Thay nghiệm \(\left(x,y\right)=\left(2,-1\right)\) ta có hệ mới là :
\(\hept{\begin{cases}2k-1=5\\2-1=1\end{cases}\Leftrightarrow k=3}\)
b) Ta có : \(\hept{\begin{cases}kx-y=5\\x+y=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=1-x\\kx-1-x=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=1-x\\x\left(k-1\right)=6\end{cases}}\)
Để hệ phương trình có nghiệm duy nhất : \(\Leftrightarrow k-1\ne0\) \(\Leftrightarrow k\ne1\)
Để hệ phương trình vô nghiệm \(\Leftrightarrow k-1=0\Leftrightarrow k=1\)
P/s : Em chưa học lớp 9 nên không biết cách trình bày cho lắm :))
\(\hept{\begin{cases}2x-y=k\\4x-ky=4\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}2x-y=k\\\frac{4\left(x-1\right)}{y}=k\end{cases}}\)
\(\Rightarrow2xy-y^2=4x-4\)
\(\Rightarrow2xy-y^2-4x+4=0\)
\(\Leftrightarrow2x\left(y-2\right)-\left(y-2\right)\left(y+2\right)=0\)
\(\Leftrightarrow\left(2x-y-2\right)\left(y-2\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=2\\y=2\end{cases}}\)(t/m)
x^2-y=4-2=2
Vậy \(k=2.2-2=2\)
Vậy k=2