Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A=\(\frac{1}{3}.5+\frac{1}{5}.7+...+\frac{1}{97}.99\)
=>A=\(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)
=>2A=\(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\)
=>2A=\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\)
=>2A=\(\frac{1}{3}-\frac{1}{99}=\frac{33}{99}-\frac{1}{99}=\frac{32}{99}\)
=>A=\(\frac{32}{99}:2=\frac{32}{99}.\frac{1}{2}=\frac{32}{198}=\frac{16}{99}\)
5/4 x 1/7 + 3/4 x 5/7 - 12/7
= 5/28 + 15/28 - 12/7
= 5/7 - 12/7
= -7/7
= -1
kí hiệu /:phần,kí hiệu'."nhân
a)5/4-5/8+-2/3=30/24+15/24+(-16/24)=29/24
b)7/19.8/11+7/19.3/11+12/19
=7/19.(8/11+3/11)+12/19
=7/19.11/11+12/19
=7/19.1+12/19
=7/19+2/19=9/19
chúc học tốt!
\(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{n.\left(n+3\right)}\)=\(\frac{1}{3}\)(\(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{n}+\frac{1}{n+3}\))=\(\frac{1}{5}-\frac{1}{n+3}=\frac{101}{1540}:\frac{1}{3}=\frac{303}{1540}\)
=>\(\frac{1}{n+3}=\frac{1}{5}-\frac{303}{1540}=\frac{1}{308}\)vậy n= 308+3=311
Đặt: \(A=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{2011.2013}\)
\(=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{2011.2013}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2011}-\frac{1}{2013}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{2013}\right)\)
\(=\frac{1}{2}.\frac{2012}{2013}\)
\(=\frac{1006}{2013}\)