Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\left|2014-x\right|\ge0\)với mọi giá trị của x
\(\left|2015-x\right|\ge0\)với mọi giá trị của x
\(\left|2016-x\right|\ge0\)với mọi giá trị của x
=> \(\left|2014-x\right|+\left|2015-x\right|+\left|2016-x\right|\ge0\)với mọi giá trị x
=> GTNN của A là 0.
Có I 2014 - x I + I 2016 - x I = I x - 2014 I + I 2016 - x I \(\ge\)I x - 2014 + 2016 - x I = 2
Dấu = xảy ra \(\Leftrightarrow\)(x - 2014)(2016 - x)\(\ge\)0
TH1: x- 2014\(\ge\)0 và 2016 - x\(\ge\)0
=> x\(\ge\) 2014 và x\(\le\)2016 ( chọn )
TH2: Làm tương tự => loại
Có I 2015 -x I \(\ge\)0
Dấu = xảy ra khi x = 2015
Vậy A min = 2 khi x = 2015
\(A=\left|2014-x\right|+\left|2015-x\right|+\left|2016-x\right|\)
\(\Leftrightarrow A=\left|x-2014\right|+\left|2016-x\right|+\left|x-2015\right|\)
\(\Leftrightarrow A\ge\left|x-2014+2016-x\right|+\left|x-2015\right|\)
\(\Leftrightarrow A=2\)
Dấu "=" xảy ra \(\Leftrightarrow\)x = 2015
Vậy GTNN của A = 2 tại x = 2015
\(A=\left|x-2014\right|+\left|2015-x\right|+\left|2016-x\right|\)
\(\ge x-2014+0+2016-x=2\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x-2014\ge0\\2015-x=0\\2016-x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge2014\\x=2015\\x\le2016\end{cases}}\Leftrightarrow x=2015\) (thỏa mãn đồng thời cả ba trường hợp)
ta có :
| 2015 + x|\(\ge\)0
=> -|2015+x|\(\le\)0
=>A=2014-|2015+x|\(\le\)2014
Dấu "=" xảy ra khi:
2015+x=0
=>x=-2015
Vậy GTLN của A là 2014 tại x=-2015
l2015 + xl >=0 với mọi x
- l 2015 +x l <=0 với mọi x
2014 - l2015+ x l <= 2014 với mọi x
VẬy GTLN của A là 2014 khi x + 2015 = 0 => x = -2015
\(A=\left|x-2013\right|+\left|x-2014\right|+\left|x-2015\right|\)
\(=\left|x-2013\right|+\left|x-2014\right|+\left|2015-x\right|\)
\(\ge x-2013+0+2015-x=2\)
Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x-2013\ge0\\x-2014=0\\x-2015\le0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x\ge2013\\x=2014\\x\le2015\end{matrix}\right.\)\(\Rightarrow x=2014\)
Vậy với \(x=2014\) thì \(A_{MIN}=2\)
a) Có thể đề là: P = (x - 2y)2 + (y - 2012)2014
Vì (x - 2y)2 \(\ge\) 0 ; (y - 2012)2 \(\ge\) 0 với mọi x; y nên P = (x - 2y)2 + (y - 2012)2014 \(\ge\) 0 với mọi x; y
=> P nhỏ nhất = 0 khi x - 2y = 0 và y - 2012 = 0
=> y = 2012 và x = 2y = 4024
b) Vì (x + y - 3)4 \(\ge\) 0 ; (x - 2y)2 \(\ge\) 0 => Q = (x + y - 3)4 + (x - 2y)2 + 2015 \(\ge\) 0 + 0 + 2015 = 2015 với mọi x; y
=> Q nhỏ nhất = 2015 khi x + y - 3 = 0 và x - 2y = 0
=> x = 2y và x + y =3 => 3y = 3 => y = 1 ; x = 2
a) P không có giá trị nhỏ nhất vì lấy y là số lớn tùy ý và x = 2y khi đó P = 0 - (y - 2012)2014 sẽ là số âm có giá trị tuyệt đối rất lớn. Có thể câu hỏi ra là dấu + trước biểu thức (y - 2012)2014.
Nếu P = (x -2y)2 + (y - 2012)2014 thì P > 0 + 0 (lũy thừa bạc chẵn bao giờ cũng không âm)
P nhỏ nhất = 0 khi x - 2y = 0 và y - 2012 = 0, hay là y = 2012 và x = 2.y = 4024
b) Q = (x + y - 3)2 + (x - 2y)2 + 2015 > 0 + 0 + 2015 = 2015. Q nhỏ nhất = 2015 khi x + y -3 = 0 và x - 2y = 0
=> x + y =3 (1)
x = 2y (2)
Thay x = 2y vào (1)
=> 2y + y = 3 => 3y = 3 => y = 1
=> x = 2.y = 2
Vậy Q nhỏ nhất = 15 khi x = 2 và y = 1
Ta có N = | x - 2014 | + | 2015 -x | \(\le\) | x - 2014 + 2015 - x |
N \(\ge\left|1\right|\)
\(\Rightarrow N\ge1\)
N đạt GTNN của N = 1 khi \(\left\{{}\begin{matrix}x-2014\ge0\\2015-x\ge0\end{matrix}\right.\)
Hoặc \(\left\{{}\begin{matrix}x-2014\le0\\2015-x\le0\end{matrix}\right.\)
* \(\left\{{}\begin{matrix}x-2014\ge0\\2015-x\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ge2014\\x\le2015\end{matrix}\right.\)
\(\Rightarrow2014\le x\le2015\) ( Thỏa mãn )
* \(\left\{{}\begin{matrix}x-2014\le0\\2015-x\le0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\le2014\\x\ge2015\end{matrix}\right.\)
\(\Rightarrow2014\le x\) và \(x\ge2015\) ( loại )
=> N đạt GTNN N = 1 khi \(2014\le x\le2015\)
Chúc bn học tốt