Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (x+2)(x^2-2x+4)-x(x^2+2)=15
<=> x^3 + 8 - x^3 - 2x = 15
<=> -2x = 7
<=> x = -7/2
b) (x+3)^3-x(3x+1)^2+(2x+1)(4x^2-2x+1)=28
<=> x^3 + 9x² + 27x + 27 - x(9x² + 6x + 1) + 8x^3 + 1 = 28
<=> x^3 + 9x² + 27x + 27 - 9x^3 - 6x² - x + 8x^3 + 1 - 28 = 0
<=> 3x² + 26x = 0
<=> x(3x + 26) = 0
Vậy x = 0 và x = -26/3
c) (x^2-1)^3-(x^4+x^2+1)(x^2-1)=0
<=> (x² - 1)[(x² -1)² - x^4 - x² - 1] = 0
<=> (x-1)(x+1)(x^4 - 2x² + 1 - x^4 - x² - 1 ) = 0
<=> -(x-1)(x+1)3x² = 0
Vậy nghiệm là x = 1 ; -1 ; 0
a) \(8x^2+27=\left(x-1\right)^3+\left(x+4\right)^3\)
\(\Leftrightarrow8x^3+27=x^3-2x^2+x-x^2+2x-1+x^3+8x^2+16x+4x^2+32x+64\)
\(\Leftrightarrow8x^3+27=2x^3+9x^2+51x+63\)
\(\Leftrightarrow8x^3+27-2x^3-9x^2-51x-63=0\)
\(\Leftrightarrow6x^3-36-9x^2-51x=0\)
\(\Leftrightarrow3\left(2x^3-12-3x^2-17x\right)=0\)
\(\Leftrightarrow3\left(2x^2+3x-8x-12\right)\left(x+1\right)=0\)
\(\Leftrightarrow3\left(2x^2+3x-8x-12\right)\left(x+1\right)=0\)
\(\Leftrightarrow3\left[x\left(2x+3\right)-4\left(2x+3\right)\right]\left(x+1\right)=0\)
\(\Leftrightarrow3\left(2x+3\right)\left(x-4\right)\left(x+1\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}2x+3=0\\x-4=0\\x+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{3}{2}\\x=4\\x=-1\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=-\frac{3}{2}\\x=4\\x=-1\end{cases}}\)
tớ tưởng áp dụng công thức: \(\left(A+B\right)^3=A^3+B^3+3AB\left(A+B\right)\)
và \(\left(A-B\right)^3=A^3-B^3-3AB\left(A-B\right)\)
a: \(\dfrac{4x^4+3x^3}{-x^3}+\dfrac{15x^3+6x}{3x}=0\)
\(\Leftrightarrow-4x-3+5x^2+2=0\)
\(\Leftrightarrow5x^2-4x-1=0\)
\(\Leftrightarrow5x^2-5x+x-1=0\)
=>(x-1)(5x+1)=0
=>x=1 hoặc x=-1/5
b: \(\dfrac{x^2-\dfrac{1}{2}x}{2x}-\dfrac{\left(3x-1\right)^2}{3x-1}=0\)
\(\Leftrightarrow\dfrac{1}{2}x-\dfrac{1}{4}-3x+1=0\)
\(\Leftrightarrow\dfrac{-5}{2}x+\dfrac{3}{4}=0\)
\(\Leftrightarrow-\dfrac{5}{2}x=-\dfrac{3}{4}\)
hay \(x=\dfrac{3}{4}:\dfrac{5}{2}=\dfrac{3}{4}\cdot\dfrac{2}{5}=\dfrac{6}{20}=\dfrac{3}{10}\)
\(A=x^2+2x+1+x^2-2x+1-2x^2+2=4\)