Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Nguyễn Lịch Tiểu - Toán lớp 6 - Học toán với OnlineMath
Em tham khảo tại link trên nhé.
Gia sử A= \(n^2+2006\)là số chính phương
=> \(n^2+2006=k^2\)
=>\(k^2-n^2=2006\)=> (k+n)(k-n)=2006
mà (k+n)-(k-n)=2n\(⋮\)2=>k+n; k-n cùng tính chẳn,lẻ
Th1: nếu k+n và k-n là số chẵn => k+n\(⋮\)2
k-n \(⋮\)2
=>(k+n)(k-n)\(⋮\)4 mà 2006 ko chia hết cho 4-> vô lí
Th2: nếu k+n và k-n là số lẻ =>(k+n)(k-n)là số lẻ=> (k+n)(k-n)=2006->vô lí
=> ko có gt n để \(n^2+2006\)là số chính phương
Tức là \(n^2+2006\)ko phải là số chính phương
Một số chính phương chia 4 dư 0 hoặc 1
Đặt \(n^2+2006=a^2\left(a\in N\right)\)
+, Nếu n^2 chia hết cho 4 thì a^2 chia 4 dư 2 (vô lí)
+, Nếu n^2 chia 4 dư 1 thì a^2 chia 4 dư 3 (vô lí)
Vậy với mọi n là số tự nhiên thì n mũ 2 cộng 2006 không phải số chính phương
a) \(a_n=\frac{\left(1+n\right).n}{2}\)
\(a_{n+1}=\frac{\left(2+n\right)\left(1+n\right)}{2}\)
b) \(a_n+a_{n+1}=\frac{\left(1+n\right).n}{2}+\frac{\left(2+n\right)\left(1+n\right)}{2}\)
\(=\left(1+n\right)\left(\frac{n}{2}+\frac{2+n}{2}\right)=\left(1+n\right)\left(1+n\right)=\left(1+n\right)^2\) là số chính phương.
Bài 1: 5a+7b chia hết cho 13
=> 35a+49b chia hết cho 13
=> 5(7a+2b)+39b chia hết cho 13
Do 39b chia hết cho 13
=> 5(7a+2b) chia hết cho 13
Mà 5 vs 13 là 2 số nguyên tố cùng nhau
=> 7a+2b chia hết cho 13. (đpcm)
Bài 2:
Xét n=3 thì 1!+2!+3!=9-là SCP (chọn)
Xét n=4 thì 1!+2!+3!+4!=33 ko là SCP (loại)
Nếu n>=5 thì n! sẽ có tận cùng là 0
=> 1!+2!+3!+4!+....+n! vs n>=5 thì sẽ có tận cùng là 3 do 1!+2!+3!+4! tận cùng =3
Mà 1 số chính phương ko thể chia 5 dư 3 (1 SỐ CHÍNH PHƯƠNG CHIA 5 DƯ 0;1;4- tính chất)
=> Với mọi n>=5 đều loại
vậy n=3.
Bài 3:
Do 26^3 có 2 chữ số tận cùng là 76
26^5 có 2 chữ số tận cùng là 76
26^7 có 2 chữ sốtận cùng là 76
Vậy ta suy ra là 26 mũ lẻ sẽ tận cùng =76
Vậy 26^2019 có 2 chữ số tận cùng là 76.