K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 1

\(U_n=\dfrac{\left(n^2-1\right)}{n\left(n+2\right)}U_{n-1}\Rightarrow n\left(n+2\right).U_n=\left(n-1\right)\left(n+1\right).U_{n-1}\)

Đặt \(n\left(n+2\right).U_n=V_n\Rightarrow V_{n-1}=\left(n-1\right)\left(n+2-1\right).U_{n-1}=\left(n-1\right).\left(n+1\right)U_{n-1}\)

\(\Rightarrow V_n=V_{n-1}\)

\(\Rightarrow V_n=V_{n-1}=V_{n-2}=...=V_1\)

Có \(V_1=1.\left(1+2\right).U_1=1\)

\(\Rightarrow V_n=1\)

\(\Rightarrow U_n=\dfrac{V_n}{n\left(n+2\right)}=\dfrac{1}{n\left(n+2\right)}\)

\(\Rightarrow A=\dfrac{1}{1.3}+\dfrac{1}{2.4}+\dfrac{1}{3.5}+...+\dfrac{1}{2015.2017}\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2015}-\dfrac{1}{2017}\right)\)

\(=\dfrac{1}{2}\left(1+\dfrac{1}{2}-\dfrac{1}{2016}-\dfrac{1}{2017}\right)\)

\(=...\)

2 tháng 9 2016

Ta có :

\(u_n=\frac{n^2+n-2}{n^2+3n}u_{n-1}=\frac{\left(n-1\right)\left(n+2\right)}{n\left(n+3\right)}u_{n-1}\)

\(=\frac{\left(n-1\right)\left(n+2\right)}{n\left(n+3\right)}.\frac{\left(n-2\right)\left(n+1\right)}{\left(n-1\right)\left(n+2\right)}u_{n-2}\)

\(=....=\frac{1.4}{n\left(n+3\right)}u_2=\frac{1}{n\left(n+3\right)}\)

BÀI 1: Cho hình bình hành ABCD có diện tích bằng 1. Gọi M là trung điểm của cạnh BC, N là giao điểm của AM và BD. Tính diện tích tứ giác MNDC.BÀI 2 : Một đường tròn nội tiếp trong một hình vuông có cạnh bằng 2,3358909 , sau đó nội tiếp trong hình tròn đó một hình vuông và quá trình đó cứ tiếp diễn như thế mãi. Nếu gọi Sn là tổng các diện tích của n hình tròn đầu tiên nội tiếp như thế....
Đọc tiếp

BÀI 1: Cho hình bình hành ABCD có diện tích bằng 1. Gọi M là trung điểm của cạnh BC, N là giao điểm của AM và BD. Tính diện tích tứ giác MNDC.

BÀI 2 : Một đường tròn nội tiếp trong một hình vuông có cạnh bằng 2,3358909 , sau đó nội tiếp trong hình tròn đó một hình vuông và quá trình đó cứ tiếp diễn như thế mãi. Nếu gọi Sn là tổng các diện tích của n hình tròn đầu tiên nội tiếp như thế. Tính S20

BÀI 3: Cho các số \(u_1,u_2,u_3,...,u_n,u_{n+1},....\)thỏa mãn \(u_n+u_{n+1}=u_{n+2}\)\(n\ge1\)và \(u_2=3;u_{50}=30\). Tính giá trị của \(S=u_1+u_2+u_3+...+u_{48}\)

BÀI 4: Tính giá trị biểu thức: \(N=\frac{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)\left(6^4+\frac{1}{4}\right)...\left(2008^4+\frac{1}{4}\right)}{\left(1^4+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right)\left(5^4+\frac{1}{4}\right)...\left(2007^4+\frac{1}{4}\right)}\)

BÀI 5: Tìm các cặp số (x, y) nguyên dương nghiệm gần đúng của phương trình:

\(5x^5-20\left(72x-y\right)^2=16277165\)

MỌI NGƯỜI GIÚP MK VỚI! CHỈ TICK BẠN NÀO TRẢ LỜI TRƯỚC T2 (7/7/2017) THUI NHA!

7
5 tháng 8 2017

Hahaha. Hỏi một phát 5 câu lun hả bà!!!!!

Bài 5 nhé:

Ta có: (làm hơi tắt nhưng cái này cậu tự biến đổi đc)

\(y=72x-\sqrt{\frac{5x^5-16277165}{20}}\) => \(5x^5-\frac{16277165}{20}\ge0\)( vì có căn nên cái bên trong lun lớn hon hoặc = 0)

=> \(x\ge\sqrt[5]{\frac{16277165}{5}}=20,0688....\)mà x nguyên dương => \(x\ge21\)

Nhập vào máy tính: X = X+1 : 72X - \(\sqrt{\frac{5x^5-16277165}{20}}\)

Sau đó ấn CALC 20 = = = .... ( ấn liên tiếp phím = tìm các giá trị \(72x-\sqrt{\frac{5x^5-16277165}{20}}\)nguyên dương, đến khi \(72x-\sqrt{\frac{5x^5-16277165}{20}}\)âm thì dừng)

=> Các cặp số (x;y) thỏa mãn đề bài là (29;11)

5 tháng 8 2017

Hỏi 5 câu luôn à

26 tháng 7 2017

toán CASIO huh???

26 tháng 7 2017

CASIO cx phải có tư duy chứ,nói như Mỹ Duyên thì chắc đi thi casio người ta đậu hết ko ai rớt quá

NV
12 tháng 1

\(u_3=u_2+u_1\)

\(u_4=u_3+u_2=\left(u_2+u_1\right)+u_2=2u_2+u_1=\left(4-2\right)u_2+\left(4-3\right)u_1\)

\(u_5=u_4+u_3=\left(4-2\right)u_2+\left(4-3\right)u_1+u_2+u_1=\left(5-2\right)u_2+\left(5-3\right)u_1\)

...

\(\Rightarrow u_n=\left(n-2\right)u_2+\left(n-3\right)u_1\)

\(\Rightarrow u_{37}=35u_2+34u_1=...\)

30 tháng 12 2023

Ta tính một vài giá trị đầu của Un:

\(U_1=3;U_2=7;U_3=15;U_4=35;U_5=83\)

Đặt \(U_{n+1}=aU_n+bU_{n-1}+c\) (*)

Khi đó thay lần lượt \(n=2,n=3,n=4\) vào (*), ta có:

\(\left\{{}\begin{matrix}15=7a+3b+c\\35=15a+7b+c\\83=35a+15b+c\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=1\\c=-2\end{matrix}\right.\)

Do đó \(U_{n+1}=2U_n+U_{n-1}-2\)