K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
PD
1
15 tháng 3 2023
y=f(x)=x^3+(m+1)x^2+(m-12)x-12m=0
y'=F1(x)=3x^2+2(m+1)x+m-12
Để f(x)=0 có 3 nghiệm phân biệt thì F1(x)=0 có hai nghiệm phan biệt
=>(2m+2)^2-4*3*(m-12)>0
=>4m^2+8m+4-12m+144>0
=>4m^2-4m+148>0
=>m^2-m+37>0
=>(m-1/2)^2+36,75>0(luôn đúng)
4 tháng 3 2020
Bạn ơi xem và trả lời hộ bài của mình đi , mình cảm ơn !!!
KN
4 tháng 3 2020
\(x^2-\left(m+3\right)x+3m=0\)
\(\Delta=\left(m+3\right)^2-4.1.3m=m^2+6m+9-12m\)
\(=m^2-9m+9=\left(m-3\right)^2\)
Để pt có 2 nghiệm phân biệt thì \(\left(m-3\right)^2>0\)
\(\Rightarrow m\ne3\)
LB
0
\(ĐKXĐ:x\ne0,x\ne3\)
đkxđ: x ≠ 0 , x ≠ 3