Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y'=\dfrac{1}{2}x^3-\dfrac{7}{2}x\)
Chỉ cần để ý 1 lý thuyết:
Đường thẳng đi qua 2 điểm \(A\left(x_1;y_1\right)\) và \(B\left(x_2;y_2\right)\) sẽ có hệ số góc \(k=\dfrac{y_1-y_2}{x_1-x_2}\)
Do đó ta có hệ số góc của đường thẳng MN là \(k=3\)
\(\Rightarrow\dfrac{1}{2}x^3-\dfrac{7}{2}x=3\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-1\\x=3\end{matrix}\right.\) (sao lắm nghiệm vậy trời)
Biết hoành độ 3 tiếp điểm, bạn viết 3 pt tiếp tuyến rồi xét pt hoành độ với (C) coi cái nào có 4 nghiệm (trong đó có 1 nghiệm kép) thì nhận
Pt hoành độ giao điểm của đồ thị hàm số (C) với đường thẳng d là:
\(\dfrac{x-1}{x+1}=m-x\Leftrightarrow\left\{{}\begin{matrix}x\ne-1\\g\left(x\right)=x^2+\left(2-m\right)x-m-1=0\left(1\right)\end{matrix}\right.\)
Đồ thị (C) cắt đường thẳng d tại 2 điểm phân biệt <=> pt(1) có 2 nghiệm phân biệt khác -1
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta>0\\g\left(-1\right)\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m^2+8>0\\-2\ne0\end{matrix}\right.\)
Khi đó: \(x_A,x_B\) là nghiệm của pt (1). Vì tiếp tuyến tại A và B //
\(\Rightarrow f'\left(x_A\right)=f'\left(x_B\right)\Leftrightarrow\dfrac{2}{\left(x_A+1\right)^2}=\dfrac{2}{\left(x_B+1\right)^2}\Leftrightarrow\left[{}\begin{matrix}x_A=x_B\left(loai\right)\\x_A+x_B=-2\end{matrix}\right.\)
Theo định lí Viet ta có:
\(x_A+x_B=m-2\Rightarrow m-2=-2\Leftrightarrow m=0\)
\(y'=\dfrac{-3}{\left(2x-1\right)^2}\)
Tiếp tuyến tại A và B cùng hệ số góc
\(\Leftrightarrow\dfrac{-3}{\left(2x_A-1\right)^2}=\dfrac{-3}{\left(2x_B-1\right)^2}\Leftrightarrow\left(2x_A-1\right)^2-\left(2x_B-1\right)^2=0\)
\(\Leftrightarrow\left(x_A-x_B\right)\left(x_A+x_B-1\right)=0\)
\(\Leftrightarrow x_A+x_B=1\) (do A ; B phân biệt nên \(x_A-x_B\ne0\))
\(\Rightarrow x_B=1-x_A\)
Ta có: \(A\left(x_A;\dfrac{x_A+1}{2x_A-1}\right)\) ; \(B\left(1-x_A;\dfrac{x_A-2}{2x_A-1}\right)\)
\(S_{OAB}=\dfrac{1}{2}\left|\left(x_A-x_O\right)\left(y_B-y_O\right)-\left(x_B-x_O\right)\left(y_A-y_O\right)\right|=\dfrac{1}{2}\)
\(\Leftrightarrow\left|x_A\left(\dfrac{x_A-2}{2x_A-1}\right)-\left(1-x_A\right)\left(\dfrac{x_A+1}{2x_A-1}\right)\right|=1\)
\(\Leftrightarrow\left|\dfrac{2x_A^2-2x_A-1}{2x_A-1}\right|=1\) \(\Leftrightarrow\left[{}\begin{matrix}2x_A^2-2x_A-1=2x_A-1\\2x_A^2-2x_A-1=1-2x_A\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x_A^2-4x_A=0\\2x_A^2=2\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x_A=0\\x_A=2\\x_A=1\\x_A=-1\end{matrix}\right.\) \(\Rightarrow k=...\)