Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
|2,5-x|=1,3
\(\orbr{\begin{cases}2,5-x=1,3\\2,5-x=-1,3\end{cases}}\Rightarrow\orbr{\begin{cases}x=1,2\\x=3,8\end{cases}}\)
Vậy x=1,2 hoặc x=3,8
|x-1,5|+|2,5-x|=0
\(\Rightarrow\hept{\begin{cases}VT:x-1,5=0\\VP:2,5-x=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1,5\\x=2,5\end{cases}}\)
Vậy x của VT là 1,5 và x của VP là 2,5
\(\left(x-\frac{1}{2}\right)^2=0\)
\(\Rightarrow x-\frac{1}{2}=0\)
x=\(0+\frac{1}{2}\)
x=\(\frac{1}{2}\)
(x-2)2=1
=> x-2=1
x=1+2
x=3
=> x-2=-1
x=(-1)+2
x=1
a, / 2,5 - x / = 1,3
Với 2,5 - x > hoặc = 0 => 2, 5 - x = 1,3
=> x = 1, 2
Với 2,5 - x < hoặc = 0 => - ( 2,5 - x ) = 1,3
=> - 2,5 + x = 1,3
=> x = 3,8
Vậy x thuộc tập hợp 1,2 ; 3,8
p/s: > hoặc = 0, < hoặc = 0 , thuộc tập hợp bạn ghi kí hiệu nha
a) \(\left|2,5-x\right|-1,3=0\)
th1: \(2,5-x\ge0\Leftrightarrow x\le2,5\)
\(\Rightarrow\left|2,5-x\right|-1,3=0\Leftrightarrow2,5-x-1,3=0\Leftrightarrow x=1,2\left(tmđk\right)\)
th2: \(2,5-x< 0\Leftrightarrow x>2,5\)
\(\Rightarrow\left|2,5-x\right|-1,3=0\Leftrightarrow x-2,5-1,3=0\Leftrightarrow x=3,8\left(tmđk\right)\)
vậy \(x=1,2;x=3,8\)
b) \(1,6.\left|x-0,2\right|=0\Leftrightarrow\left|x-0,2\right|=0\Leftrightarrow x-0,2=0\Leftrightarrow x=0,2\) vậy \(x=0,2\)
c) \(\left|\dfrac{1}{3}-x\right|-\left|\dfrac{-3}{7}\right|=0\)
th1: \(\dfrac{1}{3}-x\ge0\Leftrightarrow x\le\dfrac{1}{3}\)
\(\Rightarrow\left|\dfrac{1}{3}-x\right|-\left|\dfrac{-3}{7}\right|=0\Leftrightarrow\dfrac{1}{3}-x-\dfrac{3}{7}=0\Leftrightarrow x=\dfrac{-2}{21}\left(tmđk\right)\)
th2: \(\dfrac{1}{3}-x< 0\Leftrightarrow x>\dfrac{1}{3}\)
\(\Rightarrow\left|\dfrac{1}{3}-x\right|-\left|\dfrac{-3}{7}\right|=0\Leftrightarrow x-\dfrac{1}{3}-\dfrac{3}{7}=0\Leftrightarrow x=\dfrac{16}{21}\left(tmđk\right)\)
vậy \(x=\dfrac{-2}{21};x=\dfrac{16}{21}\)
d) \(\left|x+\dfrac{4}{15}\right|-\left|-3,75\right|=-\left|-2,15\right|\)
th1: \(x+\dfrac{4}{15}\ge0\Leftrightarrow x\ge\dfrac{-4}{15}\)
\(\Rightarrow\left|x+\dfrac{4}{15}\right|-\left|-3,75\right|=-\left|-2,15\right|\Leftrightarrow x+\dfrac{4}{15}-3,75=-2,15\)
\(\Leftrightarrow x=\dfrac{4}{3}\left(tmđk\right)\)
th2: \(x+\dfrac{4}{15}< 0\Leftrightarrow x< \dfrac{-4}{15}\)
\(\Rightarrow\left|x+\dfrac{4}{15}\right|-\left|-3,75\right|=-\left|-2,15\right|\Leftrightarrow-x-\dfrac{4}{15}-3,75=-2,15\)
\(\Leftrightarrow x=\dfrac{-28}{15}\left(tmđk\right)\)
vậy \(x=\dfrac{4}{3};x=\dfrac{-28}{15}\)
e) ta có : \(\left|x-1,5\right|\ge0\forall x\) và \(\left|2,5-x\right|\ge0\forall x\)
\(\Rightarrow\left|x-1,5\right|+\left|2,5-x\right|=0\Leftrightarrow\left\{{}\begin{matrix}x-1,5=0\\2,5-x=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1,5\\x=2,5\end{matrix}\right.\) 2 giá trị này khác nhau \(\Rightarrow\) phương trình vô nghiệm
a) Vì \(\left|2,5-x\right|=1,3\Rightarrow\left\{{}\begin{matrix}2,5-x=1,3\\2,5-x=-1,3\end{matrix}\right.\left\{{}\begin{matrix}x=1,2\\x=3,8\end{matrix}\right.\)
b) \(1,6-\left|x-0,2\right|=0\)
\(\Rightarrow\left|x-0,2\right|=1,6\)
Vì \(\left|x-0,2\right|=1,6\Rightarrow\left\{{}\begin{matrix}x-0,2=1,6\\x-0,2=-1,6\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1,8\\x=-1,4\end{matrix}\right.\)
c) Vì \(\left|x-1,5\right|\ge0;\left|2,5-x\right|\ge0\)
Mà \(\left|x-1,5\right|+\left|2,5-x\right|=0\left\{{}\begin{matrix}x-1,5=0\\2,5-x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1,5\\x=2,5\end{matrix}\right.\)
Vô lý vì \(x\) không thể nhận đồng thời 2 giá trị \(\Rightarrow x\) không có giá trị thỏa mãn đề bài
a. Vì |2,5 – x| = 1,3 nên 2,5 – x =1,3
=> x = 2,5 – 1,3 => x = 1,2
Hoặc 2,5 – x = -1,3 => x = 2,5 – ( -1,3)
=> x = 2,5 + 1,3 => x = 3,8
Vậy x = 1,2 hoặc x = 3,8
b. 1,6 - | x – 0,2| = 0 => |x – 0,2 | =1,6 nên x – 0,2 – 1,6
=> x = 1,6 + 0,2 => x = 1,8
Hoặc x – 0,2 = -1,6 => x= -1,6 + 0,2 => x = -1,4
Vậy x = 1,8 hoặc x = -1,4
c. |x – 1,5 | + | 2,5 – x | = 0 nên |x – 1,5| ≥ 0 ; |2,5 – x| ≥ 0
Suy ra: x – 1,5 = 0; 2,5 – x = 0 => x= 1,5 và x = 2,5
Điều này không đồng thời xảy ra. Vậy không có giá trị nào của x thoả mãn bài toán.
a)
\(\left|\dfrac{1}{2}-\dfrac{1}{3}+x\right|=-\dfrac{1}{4}-y\\ \Rightarrow\left\{{}\begin{matrix}\dfrac{1}{2}-\dfrac{1}{3}+x=-\dfrac{1}{4}-y\\\dfrac{1}{2}-\dfrac{1}{3}+x=\dfrac{1}{4}+y\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x+y=-\dfrac{5}{12}\\x-y=\dfrac{1}{12}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{6}\\y=-\dfrac{1}{4}\end{matrix}\right.\)
b)\(\left|x-y\right|+\left|y+\dfrac{9}{25}\right|=0\)
ta thấy : \(\left|x-y\right|\ge0\\ \left|y+\dfrac{9}{25}\right|\ge0\)\(\Rightarrow\left|x-y\right|+\left|y+\dfrac{9}{25}\right|\ge0\)
đẳng thửc xảy ra khi : \(\left\{{}\begin{matrix}x-y=0\\y+\dfrac{9}{25}=0\end{matrix}\right.\Rightarrow x=y=-\dfrac{9}{25}\)
vậy \(\left(x;y\right)=\left(-\dfrac{9}{25};-\dfrac{9}{25}\right)\)
c) \(\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}=0\)
ta thấy \(\left(\dfrac{1}{2}x-5\right)^{20}\:và\:\left(y^2-\dfrac{1}{4}\right)^{10}\) là các lũy thừa có số mũ chẵn
\(\Rightarrow\:\)\(\left(\dfrac{1}{2}x-5\right)^{20}\ge0\\ \left(y^2-\dfrac{1}{4}\right)^{10}\ge0\)\(\Rightarrow\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}\ge0\)
đẳng thức xảy ra khi \(\left\{{}\begin{matrix}\dfrac{1}{2}x-5=0\\y^2-\dfrac{1}{4}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=10\\\left[{}\begin{matrix}y=-\dfrac{1}{2}\\y=\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\)
vậy cặp số x,y cần tìm là \(\left(10;\dfrac{1}{2}\right)\:hoặc\:\left(10;-\dfrac{1}{2}\right)\)
d)
\(\left|x\left(x^2-\dfrac{5}{4}\right)\right|=x\\ \Leftrightarrow x\left(x^2-\dfrac{5}{4}\right)=x\left(vì\:x\ge0\right)\\ \Leftrightarrow x\left(x^2-\dfrac{9}{4}\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x^2-\dfrac{9}{4}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{3}{2}\end{matrix}\right.\end{matrix}\right.\)
vậy x cần tìm là \(-\dfrac{3}{2};0;\dfrac{3}{2}\)
e)\(x^2+\left(y-\dfrac{1}{10}\right)^4=0\)
ta thấy: \(x^2\ge0;\left(y-\dfrac{1}{10}\right)^4\ge0\)
\(\Rightarrow x^2+\left(y-\dfrac{1}{10}\right)^4\ge0\)
đẳng thức xảy ra khi: \(\left\{{}\begin{matrix}x=0\\y=\dfrac{1}{10}\end{matrix}\right.\)
vậy cặp số cần tìm là \(0;\dfrac{1}{10}\)
a, \(\left|2x-3\right|-\dfrac{1}{3}=0\Leftrightarrow\left|2x-3\right|=\dfrac{1}{3}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=\dfrac{1}{3}\\2x-3=-\dfrac{1}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=\dfrac{4}{3}\end{matrix}\right.\)
b, tương tự
c, \(\left|2x-1\right|-\left|x+\dfrac{1}{3}\right|=0\Leftrightarrow\left|2x-1\right|=\left|x+\dfrac{1}{3}\right|\)
TH1 : \(2x-1=x+\dfrac{1}{3}\Leftrightarrow x=\dfrac{4}{3}\)
TH2 : \(2x-1=-x-\dfrac{1}{3}\Leftrightarrow3x=\dfrac{2}{3}\Leftrightarrow x=\dfrac{2}{9}\)
d, \(3x-\left|x+15\right|=\dfrac{5}{4}\Leftrightarrow\left|x+15\right|=3x-\dfrac{5}{4}\)ĐK : x >= 5/12
TH1 : \(x+15=3x-\dfrac{5}{4}\Leftrightarrow-2x=-\dfrac{65}{4}\Leftrightarrow x=\dfrac{65}{8}\)( tm )
TH2 : \(x+15=\dfrac{5}{3}-3x\Leftrightarrow4x=-\dfrac{40}{3}\Leftrightarrow x=-\dfrac{10}{3}\)
a) \(\left(x-1,3\right)^2=9\Leftrightarrow\left[{}\begin{matrix}x-1,3=3\\x-1,3=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4,3\\x=-1,7\end{matrix}\right.\)
b) 24-x = 32
⇔ 24-x = 25
⇔ 4-x=5
⇔ x=-1
c) (x+1,5)2+(y-2,5)10=0
\(\Leftrightarrow\left\{{}\begin{matrix}x+1,5=0\\y-2,5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1,5\\y=2,5\end{matrix}\right.\)
\(a,\left(x-1,3\right)^2=9\\ \Leftrightarrow\left(x-1,3+9\right)\left(x-1,3-9\right)=0\\ \Leftrightarrow\left(x-7,7\right)\left(x-10,3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=7,7=\dfrac{77}{10}\\x=10,3=\dfrac{103}{10}\end{matrix}\right.\)
\(b,2^{4-x}=32=2^5\\ \Leftrightarrow4-x=5\\ \Leftrightarrow x=-1\)
\(c,\left(x+1,5\right)^2+\left(y-2,5\right)^{10}=0\\ \Leftrightarrow\left\{{}\begin{matrix}x+1,5=0\\y-2,5=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=-1,5=-\dfrac{3}{2}\\y=2,5=\dfrac{5}{2}\end{matrix}\right.\)