Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Khi f( x) : ( x - 2 ) ( x - 3) thì còn đa thức dư vì ( x - 2 ) ( x - 3 ) có bậc cao nhất là 2
=> đa thức dư có bậc cao nhất là 1
=> G/s: đa thức dư là: r(x) = a x + b
Ta có: f ( x ) = ( x - 2 )( x - 3 ) ( x^2 + 1 ) + ax + b
Vì f ( x ) chia ( x - 2 ) dư 2016
=> f ( 2 ) = 2016 => a.2 + b = 2016 (1)
Vì f(x ) chia ( x - 3 ) dư 2017
=> f ( 3) = 2017 => a.3 + b = 2017 (2)
Từ (1) ; (2) => a = 1; b = 2014
=> Đa thức f(x) = ( x - 2 )( x - 3 ) ( x^2 + 1 ) + x + 2014
và đa thức dư là: x + 2014
Gọi đa thức dư khi chia f(x) cho \(\left(x-2\right)\left(x-3\right)\) là \(ax+b\)
\(\Rightarrow f\left(x\right)=\left(x-2\right)\left(x-3\right)\left(x^2-1\right)+ax+b\left(1\right)\)
Lại có \(f\left(x\right):\left(x-2\right)R5\Leftrightarrow f\left(2\right)=5;f\left(x\right):\left(x-3\right)R7\Leftrightarrow f\left(3\right)=7\)
Thế vào \(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}f\left(2\right)=2a+b=5\\f\left(3\right)=3a+b=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)
\(\Leftrightarrow f\left(x\right)=\left(x-2\right)\left(x-3\right)\left(x^2-1\right)+2x+1\\ \Leftrightarrow f\left(x\right)=\left(x^2-5x-6\right)\left(x^2-1\right)+2x+1\\ \Leftrightarrow f\left(x\right)=x^4-x^2-5x^3+5x-6x^2+6+2x+1\\ \Leftrightarrow f\left(x\right)=x^4-5x^3-7x^2+7x+7\)
Lời giải:
Giả sử $f(x)$ chia $(x-1)(x-2)$ được thương là 2 và dư $ax+b$
Khi đó: $f(x)=2(x-1)(x-2)+ax+b(*)$
Vì $f(x)$ chia $x-1$ dư $2$, chia $x-2$ dư $3$ nên $f(1)=2; f(2)=3$
Thay vào $(*)$ thì:
$2=f(1)=a+b$
$3=f(2)=2a+b$
$\Rightarrow a=1; b=1$
Vậy dư là $x+1$. Đa thức $f(x)=2(x-1)(x-2)+x+1=2x^2-5x+5$
Gọi thương của P(x) khi chi cho (x-2), (x-3) lần lượt là A(x),B(x) =>P(x)=(x-2).A(x)+5 (1) và P(x)=(x-3).B(x)=7 (2) Gọi thương của P(x) khi chia cho (x-2).(x-3) là C(x) và dư là R(x) Ta có : (x-2)(x-3) có bậc là 2 => R(x) có bậc là 1 => R(x) có dạng ax+b (a,b là số nguyên ) =>R(x)=(x-2)(x-3).C(x)+ax+b (3) thay x=2 vào (1) và (3) ta có: P(x)=2a+b=5 thay x=3 vào (2) và (3) ta có: P(x)=3a+b=7 => a=2,b=1 =>R(x)=2x+1 Vậy dư của P(x) khi chia cho (x-2)(x-3) là 2x+1
Vì f(x) chia x-3 dư 7
\(\Rightarrow f\left(x\right)=\left(x-3\right)q\left(x\right)+7\)
\(\Rightarrow f\left(3\right)=7\)
Vì f(x) chia x-2 dư 5
\(\Rightarrow f\left(x\right)=\left(x-2\right)q\left(x\right)+5\)
\(\Rightarrow f\left(2\right)=5\)
Ta có f(x) khi chia (x-2)(x-3) thì được thương là 3x và còn dư
\(\Rightarrow f\left(x\right)=\left(x-2\right)\left(x-3\right)3x+ax+b\)
\(\Rightarrow\hept{\begin{cases}f\left(2\right)=2a+b=5\\f\left(3\right)=3a+b=7\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=2\\b=1\end{cases}}\)
Vậy \(f\left(x\right)=\left(x-2\right)\left(x-3\right)3x+2x+1\)