K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2018

thưa chị e chịu !!!

6 tháng 6 2018

má ơi e rảnh lắm hả e

25 tháng 6 2018

1+2+3+6+12+...+1536

Bài 1 : 

Gọi số tự nhiên phải tìm là \(ab\)

\(\left(a,b\in N,1\le a\le9,0\le b\le9\right)\)

tỉ số giữa ab và a+b là k:

Ta có ; \(k=\frac{ab}{a+b}=\frac{10+b}{a+b}\le\frac{10a+10b}{a+b}\)\(=\frac{10.\left(a+b\right)}{a+b}=10\)

\(k=10\Leftrightarrow b=10b\Leftrightarrow b=0\)

Vậy k lớn nhất bằng 10 khi :

\(b=0,a\in\left(1,2,...,9\right)\)

Các số phải tìm là \(a0\) với a là chữ số khác 0

Chúc bạn học tốt ( -_- )

15 tháng 3 2017

Ta có: \(\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\)

           \(\frac{b}{b+c+d}>\frac{b}{a+d+c+d}\)

            \(\frac{c}{c+d+a}>\frac{c}{a+b+c+d}\)

             \(\frac{d}{d+a+b}>\frac{d}{a+b+c+d}\)

\(\Rightarrow\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+b+a}+\frac{d}{d+a+b}< \frac{a}{a+b+c+d}+\frac{b}{a+b+c+d}+\frac{c}{a+b+c+d}+\frac{d}{a+b+c+d}\)

\(\Rightarrow\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}>\frac{a+b+c+d}{a+b+c+d}\)

\(\Rightarrow\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< 1\)    (1)

Lại có: \(\frac{a}{a+b+c}< \frac{a+c}{a+b+c+d}\)

           \(\frac{b}{b+c+d}< \frac{b+d}{a+b+c+d}\)

            \(\frac{c}{c+d+a}< \frac{c+a}{a+b+c+d}\)

            \(\frac{d}{d+a+b}< \frac{d+b}{a+b+c+d}\)

\(\Rightarrow\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< \frac{a+c}{a+b+c+d}+\frac{b+d}{a+b+c+d}+\frac{c+a}{a+b+c+d}+\frac{d+b}{a+b+c+d}\)

\(\Rightarrow\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< \frac{2a+2b+2c+2d}{a+b+c+d}=\frac{2\left(a+b+c+d\right)}{a+b+c+d}=2\)

\(\Rightarrow\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< 2\)        (2)

Từ (1)(2) => \(1< \frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< 2\)   (đpcm)

            

12 tháng 3 2017

Đặt  \(A=\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{60}\)

=> \(A=\left(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{60}\right)\)

Đặt A < (1/40+.....+1/40)+(1/60+1/60+...+1/60)

=>A<1/2+1/3=5/6<3/2

lớn hơn 11/15 cũng tương tự thôi bạn tự làm sẽ thú vị hơn đấy

k minh nha

12 tháng 3 2017

Thank you

10 tháng 5 2017

1/ P = 123456....20132014

Từ 1 - 9 có 9 chữ số

từ 10 -99 có: [[99-10]: 1 + 1]x 2 = 180 chữ số

từ 100 - 999 có: [[999-100]: 1 + 1] x 3 = 2700 chữ số

từ 1000 - 2014 có: [[2014 - 1000]: 1 + 1] x 4 = 4060 chữ số

=> P có: 4060 + 2700 + 180 + 9 = 6949 chữ số

2/ 

n là số n tố > 3 => n lẻ => 22 lẻ

=> n2+ 2015 chia hết cho 2 nên là hợp số

3/

Gọi 1994xy là A. A chia hết cho 72 => A chia hết cho 8 và 9

Vì A chia hết cho 8 nên A chẵn => y E {0; 2; 4; 6; 8}

* nếu y = 0 => x = 4

* nếu y = 2 => x = 2

* nếu y = 4 => x E {0; 9}

* nếu y = 6 => x = 7

* nếu y = 8 => x = 5

Vậy [x,y] = [0;4],[2;2],[4;0 và 9],[6;7],[8;5]

4/

x/9 - 3/ y = 1/18

=> 2x/18 - 3/y = 1/18

=> 3/y = 1/18 - 2x/18

=> 3/y = 1-2x/18

=> y - 2xy = 54=> y[1-2x] = 54

mà 1 - 2x lẻ nên y chẵn

mà y thuộc ước 54 => y E {-2;2;-6;6;-18;18;-54;54}

y-22-66-1818-5454
1-2x-2727-99-33-11
2x28-2610-84-220
x14-135-42-110

vậy: [x,y] = [14;-2],[2;-13],[-6;5],[6;-4],[-18;2],[18;-1],[-54;1],[54;0]

5/

Theo đề bài, ta có:

b E BC[14, 21]

mà b nhỏ nhất nên b = 42

=> 14a = 42 . 5

=> a = 15;

=> 21c = 28 . 42

=> c = 56;

từ đó suy ra

6d = 11 . 56

=> d = 308/3

=> d k là số tự nhiên. Vậy a,b,c,d E tập rỗng

25 tháng 8 2016

Do a;b;c và d là các số tự nhiên >0 => 
a + b + c < a + b + c + d 
a + b + d < a + b + c + d 
a + c + d < a + b + c + d 
b + c + d < a + b + c + d 
=> a/(a + b + c) > a/(a + b + c + d) (1) 
b/(a + b + d) > b/(a + b + c + d) (2) 
c/(b + c + d) > c/(a + b + c + d) (3) 
d/(a + c + d) > d/(a + b + c + d) (4) 
Từ (1);(2);(3) và (4) 
=> a/(a + b + c) + b/(a + b + d) + c/(b + c + d) + d/(a + c + d) > a/(a + b + c + d) + b/(a + b + c + d) + c/(a + b + c + d) + d/(a + b + c + d) 
=> a/(a + b + c) + b/(a + b + d) + c/(b + c + d) + d/(a + c + d) > (a + b + c + d)/(a + b + c + d) 
=> a/(a + b + c) + b/(a + b + d) + c/(b + c + d) + d/(a + c + d) > 1 
=> B > 1 (*) 

Ta có: (a + b + c)(a + d) - a(a + b + c + d) 
= a² + ad + ab + bd + ac + cd - (a² + ab + ac + ad) 
= a² + ad + ab + bd + ac + cd - a² - ab - ac - ad 
= bd + cd 
Do a;b;c và d là số tự nhiên >0
=> bd + cd > 0 
=> (a + b + c)(a + d) - a(a + b + c + d) > 0 
=> (a + b + c)(a + d) > a(a + b + c + d) 
=> (a + d)/(a + b + c + d) > a/(a + b + c) (5) 
Chứng minh tương tự ta được: 
(b + c)/(a + b + c + d) > b/(a + b + d) (6) 
(a + c)/(a + b + c + d) > c/(b + c + d) (7) 
(b + d)/(a + b + c + d) > d/(a + c + d) (8) 
Cộng vế với vế của (5);(6);(7) và (8) ta được: 
(a + d)/(a + b + c + d) + (b + c)/(a + b + c + d) + (a + c)/(a + b + c + d) + (b + d)/(a + b + c + d) > a/(a + b + c) + b/(a + b + d) + c/(b + c + d) + d/(a + c + d) 
=> (a + d + b + c + a + c + b + d)/(a + b + c + d) > B 
=> 2(a + b + c + d)/(a + b + c + d) > B 
=> 2 > B (*)(*) 
Từ (*) và (*)(*) 
=> 1 < B < 2 
=> B không phải là số tự nhiên

25 tháng 8 2016

A = a/a+b+c + b/a+b+d + c/b+c+d + d/a+c+d

A > a/a+b+c+d + b/a+b+c+d + c/a+b+c+d + d/a+b+c+d

A > a+b+c+d/a+b+c+d

A > 1 (1)

Áp dụng a/b < 1 => a/b < a+m/b+m (a,b,m thuộc N*)

A = a/a+b+c + b/a+b+d + c/b+c+d + d/a+c+d

A < a+d/a+b+c+d + b+c/a+b+c+d + a+c/a+b+c+d + d+b/a+b+c+d

A < 2.(a+b+c+d)/a+b+c+d

A < 2 (2)

Từ (1) và (2) => 1 < A < 2

=> A không phải số nguyên ( đpcm)