Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tứ giác ABCD có M là trung điểm AC và M cũng là trung điểm BD nên ABCD là hình bình hành (dhnb)
b) Tứ giác ABCD là hình bình hành nên BA // CD và BA = CD.
Vậy nên AN cũng song song và bằng CD. Suy ra ANDC là hình bình hành.
Lại có \(\widehat{NAC}=90^o\) nên ANDC là hình chữ nhật.
c) Ta chứng minh bổ đề:
Cho tam giác ABC có M là trung điểm cạnh AB. Đường thẳng đi qua M song song với cạnh BC và cắt cạnh AC tại điểm N. Chứng minh NA = NC.
Chứng minh:
Từ M vẽ tia song song với AC, cắt BC tại F. Tứ giác MNCF có hai cạnh MN và FC song song nhau nên là hình thang. Hình thang MNCF có hai cạnh bên song song nhau nên hai cạnh bên đó bằng nhau (theo tính chất hình thang). Vậy nên MF = NC (1)
Xét hai tam giác BMF và MAN, có: \(\widehat{MBF}=\widehat{AMN}\) (hai góc đồng vị), BM = AM, \(\widehat{BMF}=\widehat{MAN}\) (hai góc đồng vị).
\(\Rightarrow\Delta BMF=\Delta MAN\left(g-c-g\right)\Rightarrow MF=AN\left(2\right)\)
Từ (1) và (2) suy ra NA = NC. Bổ đề được chứng minh.
Áp dụng bổ đề vào các tam giác AKC và BNI ta có: KI = IC; KI = BK
Vậy nên KC = 2BK.
d) Xét tam giác EBA và MNA có:
\(\widehat{EBA}=\widehat{MNA}\) (Hai góc so le trong)
AB chung
\(\widehat{BAE}=\widehat{NAM}\left(=90^o\right)\)
\(\Rightarrow\Delta EBA=\Delta MNA\) (Cạnh góc vuông - góc nhọn kề)
\(\Rightarrow EB=MN\)
Vậy thì tứ giác EBMN là hình bình hành. Lại có \(EM\perp BN\) nên EBMN là hình thoi.
Để EBMN là hình vuông thì BN = EM hay AB = AM.
Do AC = 2AM nên tam giác ABC phải thỏa mãn: AC = 2AB thì EBMN là hình vuông.
Giải: Xét t/giác ABE và t/giác ANM
có: AB = BN (gt)
\(\widehat{B_1}=\widehat{N_1}\) (slt của AE // MN)
\(\widehat{B_1}=\widehat{B_2}\) (đối đỉnh)
=> t/giác ABE = t/giác ANM (g.c.g)
=> EA = AM (2 cạnh t/ứng)
Xét tứ giác EBMN có AB = AN (gt)
EA = MA (cmt)
=> tứ giác EBMN là hình bình hành
có BN \(\perp\)EM (gt)
=> EBMN là hình thoi
Để hình thoi EBMN là hình vuông
<=> EM = BN <=> AB = AM
do AM = MC = 1/2AC
<=> AB = 1/2AC
<=> AC = 2AB
Vậy để tứ giác EBMN là hình vuông <=> t/giác ABC có AC = 2AB
Bài 2:
a: Xét tứ giác AMCK có
I là trung điểm của AC
I là trug điểm của MK
Do đó: AMCK là hình bình hành
mà \(\widehat{AMC}=90^0\)
nên AMCK là hình chữ nhật
b: Để AMCK là hình vuông thì AM=CM
=>AM=BC/2
=>ΔABC vuông tại A
Bài 1:
a) Xét tam giác ABC có M là trung điểm của AB (gt) ,E là trung điểm của AC (gt)
\(\Rightarrow ME\)là đường trung bình tam giác ABC
\(\Rightarrow ME=\frac{1}{2}BC\left(tc\right)\left(1\right)\)
Xét tam giác ADC có E là trung điểm của AC (gt) ,P là trung điểm của DC (gt)
\(\Rightarrow PE\)là đường trung bình của tam giác ADC
\(\Rightarrow PE=\frac{1}{2}AD\left(tc\right)\left(2\right)\)
mà \(AD=BC\left(gt\right)\left(3\right)\)
Từ (1) , (2) và (3) \(\Rightarrow EM=PE\)
CMTT: \(PE=FP,FM=ME\)
\(\Rightarrow ME=EP=PF=FM\)
Xét tứ giác MEPF có:
\(ME=EP=PF=FM\left(cmt\right)\)
\(\Rightarrow MEPF\)là hình thoi ( dhnb)
b) Vì \(MEPF\)là hình thoi (cmt)
\(\Rightarrow FE\)giao với MP tại trung điểm mỗi đường (tc) (4)
Xét tam giác ADB có M là trung điểm của AB(gt) ,Q là trung điểm của AD (gt)
\(\Rightarrow MQ\)là đường trung bình của tam giác ADB
\(\Rightarrow MQ//DB,MQ=\frac{1}{2}DB\left(tc\right)\left(5\right)\)
Xét tam giác BDC có N là trung điểm của BC(gt) , P là trung điểm của DC(gt)
\(\Rightarrow NP\)là đường trung bình của tam giác BDC
\(\Rightarrow NP//DB,NP=\frac{1}{2}DB\left(tc\right)\left(6\right)\)
Từ (5) và (6) \(\Rightarrow MQ//PN,MQ=PN\)
Xét tứ giác MQPN có \(\Rightarrow MQ//PN,MQ=PN\)
\(\Rightarrow MQPN\)là hình bình hành (dhnb)
\(\Rightarrow MP\)giao QN tại trung điểm mỗi đường (tc) (7)
Từ (4) và (7) \(\Rightarrow MP,NQ,EF\)cắt nhau tại một điểm
c) Xét tam giác ABD có Q là trung điểm của AD (gt), F là trung điểm của BD(gt)
\(\Rightarrow QF\)là đường trung bình của tam giác ADB
\(\Rightarrow QF//AB\left(8\right)\)
CMTT: \(FN//CD\)và \(EN//AB\)
Mà Q,F,E,N thẳng hàng
\(\Rightarrow AB//CD\)
Vậy để Q,F,E,N thẳng hàng thì tứ giác ABCD phải thêm điều kiện \(AB//CD\)
a) \(ĐKXĐ:x\ne\pm3\)
\(A=\frac{5}{x+3}-\frac{2}{3-x}+\frac{3x^2-2x-9}{x^2-9}\)
\(\Leftrightarrow A=\frac{5\left(x-3\right)+2\left(x+3\right)-3x^2+2x+9}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow A=\frac{5x-15+2x+6-3x^2+2x+9}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow A=\frac{-3x^2+9x}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow A=\frac{-3x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow A=\frac{-3x}{x+3}\)
b) Khi \(\left|x-2\right|=1\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=1\\2-x=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\left(ktm\right)\\x=1\left(tm\right)\end{cases}}\)
Thay x = 1 vào A, ta được :
\(A=\frac{-3}{1+3}=\frac{-3}{4}\)
Vậy khi \(\left|x-2\right|=1\Leftrightarrow A=-\frac{3}{4}\)
c) Để \(A\inℤ\)
\(\Leftrightarrow\frac{-3x}{x+3}\inℤ\)
\(\Leftrightarrow-3x⋮x+3\)
\(\Leftrightarrow-3\left(x+3\right)+9⋮x+3\)
\(\Leftrightarrow9⋮x+3\)
\(\Leftrightarrow x+3\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)
\(\Leftrightarrow x\in\left\{-2;-4;0;-6;-12;6\right\}\)
Vậy để \(A\inℤ\Leftrightarrow x\in\left\{-2;-4;0;-6;-12;6\right\}\)