K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
26 tháng 7 2018

Lời giải:

Điều kiện để $Q$ có nghĩa.

\(x>0; x\neq 1\)

\(Q=\left(\frac{\sqrt{x}}{2}-\frac{1}{2\sqrt{x}}\right)^2\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}+1}\right)\)

\(=\frac{1}{4}\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^2.\frac{(\sqrt{x}+1)^2-(\sqrt{x}-1)^2}{(\sqrt{x}-1)(\sqrt{x}+1)}\)

\(=\frac{1}{4}\left(\frac{x-1}{\sqrt{x}}\right)^2.\frac{x+1+2\sqrt{x}-(x-2\sqrt{x}+1)}{x-1}\)

\(=\frac{1}{4}.\frac{(x-1)^2}{x}.\frac{4\sqrt{x}}{x-1}\)

\(=\frac{x-1}{\sqrt{x}}\)

b)

\(Q=3\sqrt{x}-3\)

\(\Leftrightarrow \frac{x-1}{\sqrt{x}}=3(\sqrt{x}-1)\)

\(\Leftrightarrow \frac{(\sqrt{x}-1)(\sqrt{x}+1)}{\sqrt{x}}=3(\sqrt{x}-1)\)

\(\Leftrightarrow (\sqrt{x}-1)(\frac{\sqrt{x}+1}{\sqrt{x}}-3)=0\)

\(x\neq 1\Rightarrow \sqrt{x}-1\neq 0\). Do đó:

\(\frac{\sqrt{x}+3}{\sqrt{x}}-3=0\Rightarrow 3=2\sqrt{x}\)

\(\Rightarrow x=\frac{9}{4}\) (thỏa mãn)

1 tháng 2 2019

ây ông ở trên ông ghi là \(\dfrac{\sqrt{x}+1}{\sqrt{x}}\)

sao xuống dưới lại thành \(\dfrac{\sqrt{x}+3}{\sqrt{x}}\)

sửa lại đi ông ơi

10 tháng 4 2022

\(\left(đk:x\ne\pm1\right)\)

\(=\left(\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}-\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right).\dfrac{\sqrt{x}+1}{\sqrt{x}}\)

\(=\left(\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)-\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right).\dfrac{\sqrt{x}+1}{\sqrt{x}}\)

\(=\left(\dfrac{x-\sqrt{x}+2\sqrt{x}-2-\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right).\dfrac{\sqrt{x}+1}{\sqrt{x}}\)

\(=\dfrac{x}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\dfrac{\sqrt{x}+1}{\sqrt{x}}\)

\(=\dfrac{\sqrt{x}}{x-1}\)

11 tháng 4 2022

bài này hình như bạn làm sai r

 

NV
11 tháng 4 2022

ĐKXĐ: \(x>0;x\ne1\)

\(Q=\left(\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}-\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right).\left(\dfrac{\sqrt{x}+1}{\sqrt{x}}\right)\)

\(=\left(\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2}-\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right).\dfrac{1}{\sqrt{x}}\)

\(=\left(\dfrac{\sqrt{x}+2}{\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\right).\dfrac{1}{\sqrt{x}}\)

\(=\left(\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right).\dfrac{1}{\sqrt{x}}\)

\(=\dfrac{2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\dfrac{1}{\sqrt{x}}=\dfrac{2}{x-1}\)

b.

Để \(Q\in Z\Rightarrow2⋮\left(x-1\right)\Rightarrow x-1=Ư\left(2\right)\)

\(\Rightarrow x-1=\left\{-2;-1;1;2\right\}\)

\(\Rightarrow x=\left\{-1;0;2;3\right\}\)

Kết hợp ĐKXĐ: \(\Rightarrow x=\left\{2;3\right\}\)

(Đáp án của đề bài đã quên mất ĐKXĐ ban đầu nên ko loại 2 giá trị \(x=-1;x=0\))

29 tháng 12 2023

a) ĐKXĐ: \(x>0;x\ne4\)

\(Q=\left(\dfrac{\sqrt{x}-1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\right):\left(\dfrac{1}{\sqrt{x}}-\dfrac{1}{\sqrt{x}+1}\right)\)

\(=\left[\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}-\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\right]:\dfrac{\sqrt{x}+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x-1-\left(x-4\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}:\dfrac{1}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\dfrac{3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\cdot\sqrt{x}\left(\sqrt{x}+1\right)\)

\(=\dfrac{3\sqrt{x}}{\sqrt{x}-2}\)

b) Để biểu thức \(Q\) có giá trị âm thì \(\dfrac{3\sqrt{x}}{\sqrt{x}-2}< 0\)

\(\Rightarrow\sqrt{x}-2< 0\) (vì \(3\sqrt{x}>0\forall x>0;x\ne4\))

\(\Leftrightarrow\sqrt{x}< 2\Leftrightarrow0\le x< 4\) 

Kết hợp với điều kiện xác định của \(x\), ta được: \(0< x< 4\)

\(\text{#}\mathit{Toru}\)

29 tháng 12 2023

đk là 0<x<4 thì ở kết quả <=> em thêm không âm ở trước nữa hoặc => x<4 nha.

11 tháng 6 2021

undefinedundefined

11 tháng 6 2021

Kết luận giùm mình nha ^^

9 tháng 7 2021

`B=(1/(3-sqrtx)-1/(3+sqrtx))*(3+sqrtx)/sqrtx(x>=0,x ne 9)`

`B=((3+sqrtx)/(9-x)-(3-sqrtx)/(9-x))*(3+sqrtx)/sqrtx`

`B=((3+sqrtx-3+sqrtx)/(9-x))*(3+sqrtx)/sqrtx`

`B=(2sqrtx)/((3-sqrtx)(3+sqrtx))*(3+sqrtx)/sqrtx`

`B=2/(3-sqrtx)`

`B>1/2`

`<=>2/(3-sqrtx)-1/2>0`

`<=>(4-3+sqrtx)/[2(3-sqrtx)]>0`

`<=>(sqrtx+1)/(2(3-sqrtx))>0`

Mà `sqrtx+1>=1>0`

`<=>2(3-sqrtx)>0`

`<=>3-sqrtx>0`

`<=>sqrtx<3`

`<=>x<9`

NV
14 tháng 9 2021

\(A=\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+2\right)^2}:\left(\dfrac{x}{\sqrt{x}\left(\sqrt{x}+2\right)}+\dfrac{x}{\sqrt{x}+2}\right)\)

\(=\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+2\right)^2}:\left(\dfrac{\sqrt{x}}{\sqrt{x}+2}+\dfrac{x}{\sqrt{x}+2}\right)\)

\(=\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+2\right)^2}:\left(\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+2}\right)\)

\(=\dfrac{\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+2\right)^2}.\dfrac{\left(\sqrt{x}+2\right)}{\sqrt{x}.\left(\sqrt{x}+1\right)}\)

\(=\dfrac{1}{\sqrt{x}\left(\sqrt{x}+2\right)}\)

\(A\ge\dfrac{1}{3\sqrt{x}}\Leftrightarrow\dfrac{1}{\sqrt{x}\left(\sqrt{x}+2\right)}\ge\dfrac{1}{3\sqrt{x}}\)

\(\Leftrightarrow\dfrac{1}{\sqrt{x}+2}\ge\dfrac{1}{3}\Leftrightarrow\sqrt{x}+2\le3\)

\(\Rightarrow x\le1\)

Kết hợp ĐKXĐ \(\Rightarrow0< x\le1\)

1: Ta có: \(A=\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right):\dfrac{\sqrt{x}}{\sqrt{x}+1}\)

\(=\left(\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}-\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right):\dfrac{\sqrt{x}}{\sqrt{x}+1}\)

\(=\dfrac{x-\sqrt{x}+2\sqrt{x}-2-\left(x+\sqrt{x}-2\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}:\dfrac{\sqrt{x}}{\sqrt{x}+1}\)

\(=\dfrac{x+\sqrt{x}-2-x+\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}\)

\(=\dfrac{2\sqrt{x}}{\sqrt{x}\left(x-1\right)}\)

\(=\dfrac{2}{x-1}\)

2: ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)

Để A là số nguyên thì \(2⋮x-1\)

\(\Leftrightarrow x-1\inƯ\left(2\right)\)

\(\Leftrightarrow x-1\in\left\{1;-1;2;-2\right\}\)

\(\Leftrightarrow x\in\left\{2;0;3;-1\right\}\)

Kết hợp ĐKXĐ, ta được: \(x\in\left\{2;3\right\}\)

Vậy: Để A là số nguyên thì \(x\in\left\{2;3\right\}\)