K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2020

a) \(ĐKXĐ:x>0;x\ne4\)

Ta có : \(P=\left(\frac{\sqrt{x}}{\sqrt{x}-2}+\frac{4x}{2\sqrt{x}-x}\right):\left(\frac{\sqrt{x}+3}{\sqrt{x}-2}\right)\)

\(=\left[\frac{\sqrt{x}.\sqrt{x}-4x}{\sqrt{x}.\left(\sqrt{x}-2\right)}\right]\cdot\frac{\sqrt{x}-2}{\sqrt{x}+3}\)

\(=\frac{-3x}{\sqrt{x}.\left(\sqrt{x}+3\right)}\)

b) Ta có : \(x-1=10-4\sqrt{6}=\left(\sqrt{6}-2\right)^2\)

\(\Rightarrow\sqrt{x}=\sqrt{\left(\sqrt{6}-2\right)^2+1}\)

......

30 tháng 7 2019

\(ĐKXĐ:\)

\(\hept{\begin{cases}x-9\ne0\\\sqrt{x}-2\ne0\\\sqrt{x}+3\ne0;x\ge0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ne9\\x\ne4\\x\ge0\end{cases}}\)

Vậy...................................................

30 tháng 7 2019

\(A=\left(\frac{x-3\sqrt{x}}{x-9}-1\right):\left(\frac{9-x}{x+\sqrt{x}-6}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}+3}\right)\)

\(=\left(\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-1\right):\left(\frac{9-x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}+3}\right)\)

\(=\frac{\sqrt{x}-\sqrt{x}-3}{\left(\sqrt{x}+3\right)}:\left(\frac{9-x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\right)\)

\(=\frac{-3}{\sqrt{x}+3}:\left(\frac{9-x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\frac{x-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}-\frac{x-4}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\right)\)

\(=\frac{-3}{\sqrt{x}+3}:\frac{9-x+x-9-x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{-3}{\sqrt{x}+3}:\frac{-x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{-3}{\sqrt{x}+3}.\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{4-x}\)

\(=\frac{3\left(2-\sqrt{x}\right)}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\)

\(=\frac{3}{\left(2+\sqrt{x}\right)}\)

20 tháng 10 2023

a: \(P=\dfrac{\sqrt{x}-\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{x-1-x+4}\)

\(=\dfrac{1}{\sqrt{x}}\cdot\dfrac{\sqrt{x}-2}{3}=\dfrac{\sqrt{x}-2}{3\sqrt{x}}\)

b: P=1/4

=>\(\dfrac{\sqrt{x}-2}{3\sqrt{x}}=\dfrac{1}{4}\)

=>\(4\left(\sqrt{x}-2\right)=3\sqrt{x}\)

=>\(4\sqrt{x}-8-3\sqrt{x}=0\)

=>\(\sqrt{x}=8\)

=>x=64

c: Khi \(x=4+2\sqrt{3}\) thì \(P=\dfrac{\sqrt{4+2\sqrt{3}}-2}{3\cdot\sqrt{4+2\sqrt{3}}}\)

\(=\dfrac{\sqrt{3}+1-2}{3\left(\sqrt{3}+1\right)}=\dfrac{\sqrt{3}-1}{3\sqrt{3}+3}=\dfrac{2-\sqrt{3}}{3}\)

12 tháng 9 2020

Đk: x \(\ge\)0; x \(\ne\)1; x \(\ne\)9

1) \(B=\left(\frac{2x+3}{\sqrt{x^3}-1}-\frac{1}{\sqrt{x}-1}\right):\left(1-\frac{x+4}{x+\sqrt{x}+1}\right)\)

\(B=\frac{2x+3-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}:\frac{x+\sqrt{x}+1-x-4}{x+\sqrt{x}+1}\)

\(B=\frac{-x-\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\frac{x+\sqrt{x}+1}{\sqrt{x}-3}\)

\(B=\frac{-\left(x+2\sqrt{x}-\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}\)

\(B=\frac{-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}=\frac{\sqrt{x}+2}{3-\sqrt{x}}\)

2. \(B=\frac{\sqrt{x}+2}{3-\sqrt{x}}=\frac{-\left(3-\sqrt{x}\right)+5}{3-\sqrt{x}}=-1+\frac{5}{3-\sqrt{x}}\)

Để B \(\in\)Z <=> 5 \(⋮\)\(3-\sqrt{x}\)

<=> \(3-\sqrt{x}\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

Do \(3-\sqrt{x}\le\)3 => 3 - \(\sqrt{x}\)\(\in\){1; -1; -5}

Lập bảng:

\(3-\sqrt{x}\) 1  -1 -5 
   x 4 16 64

Vậy ...
 

30 tháng 7 2019

a) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne4\\x\ne9\end{matrix}\right.\)

\(A=\left(\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-1\right):\left(\frac{9-x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right)\\ =\left(\frac{\sqrt{x}-\sqrt{x}-3}{\sqrt{x}+3}\right):\left(\frac{9-x+x-9-x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right)\\ =\frac{-3}{\sqrt{x}+3}:\frac{4-x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\\ =\frac{-3}{\sqrt{x}+3}\cdot\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{-\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\\ =\frac{3}{\sqrt{x}+2}\)

b) Ta có:

\(P=\frac{3}{\sqrt{x}+2}< 1\\ \Leftrightarrow\frac{3}{\sqrt{x}+2}-1< 0\\ \Leftrightarrow\frac{3-\left(\sqrt{x}+2\right)}{\sqrt{x}+2}< 0\\ \Leftrightarrow\frac{1-\sqrt{x}}{\sqrt{x}+2}< 0\\ \Leftrightarrow1-\sqrt{x}< 0\\ \Leftrightarrow\sqrt{x}>1\\ \Leftrightarrow x>1\)

Vậy với \(x>1;x\ne4;x\ne9\)thì P < 1

c) Để \(A\in Z\Leftrightarrow3⋮\sqrt{x}+2\Leftrightarrow\sqrt{x}+2\inƯ\left(3\right)\)

Ta có bảng sau

\(\sqrt{x}+2\) 1 -1 3 -3
\(\sqrt{x}\) -1 -3 1 -5
\(x\) loại loại 1(tm) loại

Vậy...................

17 tháng 10 2018

\(a)\)\(R=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3\left(\sqrt{x}+3\right)}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)

\(R=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right):\frac{\sqrt{x}+1}{\sqrt{x}-3}\)

\(R=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3}{\sqrt{x-3}}\right):\frac{\sqrt{x}+1}{\sqrt{x}-3}\)

\(R=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}-3}{\sqrt{x}-3}\right):\frac{\sqrt{x}+1}{\sqrt{x}-3}\)

\(R=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+1\right):\frac{\sqrt{x}+1}{\sqrt{x}-3}\)

\(R=\frac{3\sqrt{x}+3}{\sqrt{x}+3}.\frac{\sqrt{x}-3}{\sqrt{x+1}}\)

\(R=\frac{3\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}\)

\(R=\frac{3\left(\sqrt{x}-3\right)}{\sqrt{x}+3}\)

\(b)\) Ta có : \(R< -1\)

\(\Leftrightarrow\)\(\frac{3\left(\sqrt{x}-3\right)}{\sqrt{x}+3}< -1\)

\(\Leftrightarrow\)\(\frac{\sqrt{x}-3}{\sqrt{x}+3}< \frac{-1}{3}\)

\(\Leftrightarrow\)\(3\sqrt{x}-9< -\sqrt{x}-3\)

\(\Leftrightarrow\)\(4\sqrt{x}< 6\)

\(\Leftrightarrow\)\(\sqrt{x}< \frac{3}{2}\)

\(\Leftrightarrow\)\(x< \frac{9}{4}\)

Chúc bạn học tốt ~