Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : (O;AB/2) = OB
(O;AB/2) = OA
Lại có : AD + DO = OA
OC + BC = OB
Vì OA = OB = R => AD + DO = OC + BC
mà BD > BC => OD < OC
=> AD > BC
a) +)Xét đtron (O) có : CA,CM là hai tiếp tuyến cắt nhau tại C, tiếp điểm A,M
=> CA=CM ; OC là p/giác của góc AOM(T/chất hai tiếp tuyến cắt nhau)
Có: MD, BD là hai tiếp tuyến cắt nhau tại D , tiếp điểm M,B
=> MD=DB ; OD là p/giác của góc BOM
Ta có : DC= CM+MD
Mà CA=CM; MD=DB
Suy ra: CD= AC+BD
+)Vì AC là tiếp tuyến của nửa đtron (O) tại A nên CA vg góc với AB tại A
=> góc CAB= 90°
=> ∆ABC vuông tại A
b) Ta có : góc AOC= gócMOC (OC là phân giác của góc AOM
Góc MOD= BOD(OD là p/giác của BOM)
Lại có : AOC + MOC+ MOD+ BOD= 180°
SUY RA : MOC+ MOD=90°
=> COD=90°
=> ∆COD vuông tại O
Vì CD là tiếp tuyến của nửa đtron (O) tại M nên: OM vg góc với CD
Xét ∆OCD vg tại O; đường cao OM:
OM²= CM.MD (Hệ thức lượng…)
Mà OM=R (bán kính nửa đtron (O))
CA= CM; MD=MB
SUY RA : AC.BD=R²
(Vì ko tải đc ảnh nên chắc bạn phải tự vẽ hình…..câu c mình cảm tưởng đề bài ko đc đúng vì mình thấy nó khác với hình của mình(∆ABC ko đều đc)
a: Xét (O) co
CM,CA là tiếp tuyên
=>CM=CA
Xét (O) có
DM,DB là tiếp tuyến
=>DM=DB
CD=CM+MD
=>CD=CA+BD
b: Xet ΔACN và ΔDBN có
góc NAC=góc NDB
góc ANC=góc DNB
=>ΔACN đồng dạng vơi ΔDBN
=>AC/BD=AN/DN
=>CN/MD=AN/ND
=>MN/AC
a:góc ABD=góc DCA
góc ABD=góc FAD(góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cùng chắn cung AD)
góc FAD=góc CAD
=>góc ABD=góc CBD
=>BD là phân giác của góc ABE
mà góc ADB=90 độ
nên BD là đường cao
=>ΔBAE cân tại B
b: Xét ΔEAB có
AC,BD là các đường cao
AC cắt BD tại K
Do đó: K là trực tâm
=>EK vuông góc với BA
c: Xét ΔAKF có AD vừa là đường cao, vừa là phân giác
nên ΔAKF cân tại A
=>góc AKF=góc AFK=góc KFE
=>AK//FE
Xét tứ giác AKEF có
AK//FE
AF//KE
KE=KA
Do đó: AKEF là hình thoi