K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2021

a, - Xét phương trình hoành độ giao điểm :\(x^2=\left(m-2\right)x-m+3\)

\(\Leftrightarrow x^2-\left(m-2\right)x+m-3=0\left(I\right)\)

\(\Delta=b^2-4ac=\left(m-2\right)^2-4\left(m-3\right)\)

\(=m^2-4m+4-4m+12=m^2-8m+16=\left(m-4\right)^2\)

- Để P cắt d tại 2 điểm phân biệt <=> PT ( I ) có 2 nghiệm phân biệt .

<=> \(\Delta>0\)

\(\Leftrightarrow\left(m-4\right)^2>0\)

\(\Leftrightarrow m\ne4\)

Vậy ...

b, Hình như đề thiếu giá trị của cạnh huỳnh hay sao á :vvvv

 

a) Phương trình hoành độ giao điểm là: 

\(x^2=\left(m-2\right)x-m+3\)

\(\Leftrightarrow x^2-\left(m-2\right)x+m-3=0\)

\(\Delta=\left(m-2\right)^2-4\cdot\left(m-3\right)=m^2-4m+4-4m+12=m^2-8m+16\)

Để (d) cắt (P) tại hai điểm phân biệt thì \(\Delta>0\)

\(\Leftrightarrow m^2-8m+16>0\)

\(\Leftrightarrow\left(m-4\right)^2>0\)

mà \(\left(m-4\right)^2\ge0\forall m\)

nên \(m-4\ne0\)

hay \(m\ne4\)

Vậy: khi \(m\ne4\) thì (d) cắt (P) tại hai điểm phân biệt

4 tháng 4 2021

Xét pt tọa độ giao điểm:

X²=(m+4)x-2m-5

<=> -x²+(m+4)x-2m-5

a=-1.   b= m+4.  c=2m-5

Để pt có 2 No pb =>∆>0

=> (m+4)²-4×(-1)×2m-5>0

=> m² +2×m×4+16 +8m-20>0

=> m²+9m -2>0

=> x<-9 và x>0

 

 

a: Tọa độ giao điểm là:

\(\left\{{}\begin{matrix}x^2=2x-1\\y=x^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)

b: Phương trình hoành độ giao điểm là:

\(x^2-mx+m-1=0\)

\(\text{Δ}=\left(-m\right)^2-4\cdot1\cdot\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2>=0\)

Để phương trình có hai nghiệm phân biệt thì m-2<>0

hay m<>2

Theo đề, ta có: \(x_1+x_2+2\sqrt{x_1x_2}=9\)

\(\Leftrightarrow m+2\sqrt{m-1}=9\)

\(\Leftrightarrow\sqrt{m-1}=\dfrac{9-m}{2}\)

\(\Leftrightarrow\left\{{}\begin{matrix}1< m< 9\\m^2-18m+81-4m+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}1< m< 9\\\left(m-5\right)\left(m-17\right)=0\end{matrix}\right.\)

=>m=5

22 tháng 4 2021

Phương trình hoành độ giao điểm là :

\(-x^2=mx+2\)

\(\Leftrightarrow x^2+mx+2=0\)

Lại có : \(\Delta=m^2-8>0\)

Theo định lí Vi - et ta có :

\(\left\{{}\begin{matrix}x1+x2=-m\\x1x2=2\end{matrix}\right.\)

\(\left(x1+1\right)\left(x2+1\right)=0\)

\(\Leftrightarrow x1x2+x1+x1+1=0\)

\(\Leftrightarrow2-m+1=0\Leftrightarrow m=3\)

 

−x2=mx+2

⇔x2+mx+2=0

chúng ta sẽ lại có : Δ=m2−8>0

Theo định lí Vi - et ta có :

{x1+x2=−mx1x2=2

\(\trái(x1+1\phải)\trái(x2+1\phải)=0\)

⇔x1x2+x1+x1+1=0

a) Phương trình hoành độ giao điểm là:

\(x^2=2x-m+2\)

\(\Leftrightarrow x^2-2x+m-2=0\)

Để hai đồ thị hàm số chỉ có một điểm chung thì Δ=0

\(\Leftrightarrow4-1\cdot\left(m-2\right)=0\)

\(\Leftrightarrow m-2=4\)

hay m=6