K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 5 2021

\(\Delta'=\left(m+1\right)^2-\left(2m-3\right)=m^2+4>0\) ; \(\forall m\)

\(\Rightarrow\) Phương trình luôn có 2 nghiệm pb với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1x_2=2m-3\end{matrix}\right.\)

Ta có: \(P=\left|\dfrac{x_1+x_2}{x_1-x_2}\right|\ge0\)

\(\Rightarrow P_{min}=0\) khi \(x_1+x_2=0\Leftrightarrow m=-1\)

Đề là yêu cầu tìm max hay min nhỉ? Min thế này thì có vẻ là quá dễ

10 tháng 4 2023

Để phương trình có 2 nghiệm phân biệt thì:

\(\Delta>0\)

<=> \(\left[-\left(2m+5\right)\right]^2-4.1.\left(2m+1\right)>0\)

\(\Leftrightarrow4m^2+12m+21>0\)

\(\Leftrightarrow4m^2+12m+9+12>0\)

<=> \(\left(2m+3\right)^2+12>0\)

Vì (2m+3)2 luôn lớn hơn hoặc bằng 0 với mọi m nên phương trình đã cho có nghiệm với mọi giá trị m.

Theo viét:

\(\left\{{}\begin{matrix}x_1+x_2=2m+5\\x_1x_2=2m+1\end{matrix}\right.\)

Theo đề:

\(M=\left|\sqrt{x_1}-\sqrt{x_2}\right|\) (điều kiện: \(x_1;x_2\ge0\))

=> \(M^2=x_1+x_2-2\sqrt{x_1x_2}=2m+5-2\sqrt{2m+1}\)

<=> \(M^2=\left(\sqrt{2m+1}\right)\left(\sqrt{2m+1}\right)-2\sqrt{\left(2m+1\right)}+4\)

<=> \(M^2=\left(\sqrt{2m+1}\right)\left(\sqrt{2m+1}-2\right)+4\)

<=> \(M^2=\left(\sqrt{2m+1}-1\right)^2+4\ge4\)

=> \(M\ge2\).

Dấu "=" xảy ra khi m = 0

Thế m = 0 vào phương trình ở đề được:

\(x^2-5x+1=0\)

Phương trình này có hai nghiệm dương -> thỏa mãn điều kiện.

Vậy min M = 2 và m = 0

T.Lam

13 tháng 5 2021

Phương trình có 2 nghiệm phân biệt ⇔ △ > 0

⇔ 4m2 + 20m + 25 - 8m - 4 > 0

⇔ 4m2 + 12m + 21 > 0

⇔ (2m + 3)2 + 12 > 0 ⇔ m ∈ R

Theo hệ thức Viet có: \(\left\{{}\begin{matrix}x_1+x_2=2m+5\\x_1.x_2=2m+1\end{matrix}\right.\)

=> P2 = (\(\left|\sqrt{x_1}-\sqrt{x_2}\right|\))2 = (\(\sqrt{x_1}-\sqrt{x_2}\))2

                                       = x1 + x2 - 2\(\sqrt{x_1.x_2}\)

                                       = 2m + 5 - 2\(\sqrt{2m+1}\)

                                       = 2m + 1 - 2\(\sqrt{2m+1}\) + 1 + 3

                                       = (\(\sqrt{2m+1}\) - 1)2 + 3 ≥ 3 ∀m

=> P ≥ \(\sqrt{3}\) 

Dấu "=" xảy ra ⇔ \(\sqrt{2m+1}\) - 1 = 0 ⇔ \(\sqrt{2m+1}\)=1 ⇔ 2m + 1 = 1 ⇔ m = 0

Vậy với m = 0 thì P đạt GTNN = \(\sqrt{3}\)

12 tháng 8 2021

b) phương trình có 2 nghiệm  \(\Leftrightarrow\Delta'\ge0\)

\(\Leftrightarrow\left(m-1\right)^2-\left(m-1\right)\left(m+3\right)\ge0\)

\(\Leftrightarrow m^2-2m+1-m^2-3m+m+3\ge0\)

\(\Leftrightarrow-4m+4\ge0\)

\(\Leftrightarrow m\le1\)

Ta có: \(x_1^2+x_1x_2+x_2^2=1\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=1\)

Theo viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\left(m-1\right)\\x_1x_2=\dfrac{c}{a}=m+3\end{matrix}\right.\)

\(\Leftrightarrow\left[-2\left(m-1\right)^2\right]-2\left(m+3\right)=1\)

\(\Leftrightarrow4m^2-8m+4-2m-6-1=0\)

\(\Leftrightarrow4m^2-10m-3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m_1=\dfrac{5+\sqrt{37}}{4}\left(ktm\right)\\m_2=\dfrac{5-\sqrt{37}}{4}\left(tm\right)\end{matrix}\right.\Rightarrow m=\dfrac{5-\sqrt{37}}{4}\)

 

1 tháng 6 2023

Phương trình có : \(\Delta=b^2-4ac=\left[-\left(m+1\right)\right]^2-4.1.\left(-2\right)\)

\(\Rightarrow\Delta=\left(m+1\right)^2+8>0\)

Suy ra phương trình có hai nghiệm phân biệt với mọi \(m\).

Theo định lí Vi-ét : \(\left\{{}\begin{matrix}x_1+x_2=m+1\\x_1x_2=-2\end{matrix}\right.\)

Theo đề bài : \(\left(1-\dfrac{2}{x_1+1}\right)^2+\left(1-\dfrac{2}{x_2+1}\right)^2=2\)

\(\Leftrightarrow\dfrac{\left(x_1-1\right)^2}{\left(x_1+1\right)^2}+\dfrac{\left(x_2-1\right)^2}{\left(x_2+1\right)^2}=2\)

\(\Leftrightarrow\dfrac{\left[\left(x_1-1\right)\left(x_2+1\right)\right]^2+\left[\left(x_2-1\right)\left(x_1+1\right)\right]^2}{\left[\left(x_1+1\right)\left(x_2+1\right)\right]^2}=2\)

\(\Leftrightarrow\left[\left(x_1-1\right)\left(x_2+1\right)\right]^2+\left[\left(x_2-1\right)\left(x_1+1\right)\right]^2-2\left[\left(x_1+1\right)\left(x_2+1\right)\right]^2=0\)

\(\Leftrightarrow\left(x_2+1\right)^2\left[\left(x_1-1\right)^2-\left(x_1+1\right)^2\right]+\left(x_1+1\right)^2\left[\left(x_2-1\right)^2-\left(x_2+1\right)^2\right]=0\)

\(\Leftrightarrow-4x_1\left(x_2+1\right)^2-4x_2\left(x_1+1\right)^2=0\)

\(\Leftrightarrow x_1x_2^2+2x_1x_2+x_1+x_1^2x_2+2x_1x_2+x_2=0\)

\(\Leftrightarrow x_1x_2\left(x_1+x_2\right)+4x_1x_2+\left(x_1+x_2\right)=0\)

\(\Rightarrow-2\left(m+1\right)+4\cdot\left(-2\right)+m+1=0\)

\(\Leftrightarrow m=-9\)

Vậy : \(m=-9.\)

24 tháng 3 2022

b1: tìm đk m t/m: Δ>0 ↔ m∈(\(\dfrac{1-\sqrt{10}}{2}\) ; \(\dfrac{1+\sqrt{10}}{2}\))

b2: ➝x1+x2 =-2m-1 (1)

      → x1.x2=m^2-1 (2)

b3: biến đổi : (x1-x2)^2 = x1-5x2

↔ (x1+x2)^2 -4.x1.x2 -(x1+x2) +6.x2=0

↔4.m^2 +4m +1 - 4.m^2 +4 +2m+1+6. x2=0

↔x2= -m-1

B4: thay x2= -m-1 vào (1) → x1 = -m

     Thay x2 = -m-1, x1 = -m vào (2) 

→m= -1

B5: thử lại:

Với m= -1 có pt: x^2 -x =0

Có 2 nghiệm x1=1 và x2=0 (thoả mãn)

8 tháng 7 2021

pt sai 

8 tháng 7 2021

Mình xin lỗi mình vừa sửa lại phương trình rồi ạ bạn giúp mình giải với. Mình cảm ơn!