Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
*Tự vẽ hình
a) Xét tam giác ABM và ACM, có :
AB=AC(GT)
AM-cạnh chung
BM=MC(GT)
-> Tam giác ABM=ACM(c.c.c)
b) Do tam giác ABM=ACM (cmt)
-> \(\widehat{AMB}=\widehat{AMC}=90^o\)
-> AM vuông góc BC
c) Xét tam giác AEI và MBI, có :
\(\widehat{EAI}=\widehat{BMI}=90^o\)
\(\widehat{AIE}=\widehat{BIM}\left(đđ\right)\)
AI=IM(GT)
-> tam giác AEI=MBI(g.c.g)
-> AE=BM ( đccm)
d) Chịu. Tự làm nhe -_-'
#Hoctot
bạn tự vẽ hình
a, xét tam giác ABM và tam giác ACM có :
AB=AC (gt)
MB=MC (gt)
AM là cạch chung
suy ra tam giác ABM =tam giác ACN (c.c.c)
b, Vì tam giác ABM = tam giác ACN (câu a)
suy ra góc M1= góc M2 (2 góc tương ứng)
mà M1+M2=180 ( 2 góc kề bù)
suy ra : M1=M2= 90
suy ra AM vuông góc BC
c, Vì tam giác ABM = tam giác ACM (câu a)
suy ra : A1=A2 ( 2 góc tương ứng)
suy ra: AM là phân giác góc BAC
GT | △ABC cân tại A. BM ⊥ AC, CN ⊥ AB. BM ∩ CN = {K}. AK ∩ BC = {H}. MD = MK ; NE = NK |
KL | a. BM = CN b, AK là p/g BAC c, AK ⊥ BC d, △AED cân |
Bài giải:
a, Xét △BMA vuông tại M và △CNA vuông tại N
Có: AB = AC (△ABC cân tại A)
BAC là góc chung
=> △BMA = △CNA (ch-gn)
=> BM = CN (2 cạnh tương ứng)
b, Xét △NKA vuông tại N và △MKA vuông tại M
Có: AN = AM (△BMA = △CNA)
AK là cạnh chung
=> △NKA = △MKA (ch-cgv)
=> NAK = MAK (2 góc tương ứng) (1)
Và AK nằm giữa AN và AM
Mà N AB ; M AC
=> AK nằm giữa AB và AC (2)
Từ (1) và (2)
=> AK là phân giác BAC
c, Xét △BAH và △CAH
Có: BA = CA (cmt)
BAH = CAH (cmt)
AH là cạnh chung
=> △BAH = △CAH (c.g.c)
=> BHA = CHA (2 góc tương ứng)
Mà BHA + CHA = 180o (2 góc kề bù)
=> BHA = CHA = 180o : 2 = 90o
=> AH ⊥ BC
Mà AK ∩ BC = {H}
=> AK ⊥ BC
d, Xét △NEA vuông tại N và △NKA vuông tại N
Có: NE = NK (gt)
AN là cạnh chung
=> △NEA = △NKA (2cgv)
=> AE = AK (2 cạnh tương ứng)
Xét △DMA vuông tại M và △KMA vuông tại M
Có: MD = MK (gt)
AM là cạnh chung
=> △DMA = △KMA (2cgv)
=> AD = AK (2 cạnh tương ứng)
Mà AE = AK (cmt)
=> AD = AE
Xét △ADE có: AD = AE (cmt) => △ADE cân tại A
a: Xét ΔAMB vuông tại M và ΔANC vuông tại N có
AB=AC
\(\widehat{NAC}\) chung
Do đó: ΔAMB=ΔANC
Suy ra: MB=NC
b: Ta có: ΔAMB=ΔANC
nên AM=AN
Ta có: AN+NB=AB
AM+MC=AC
mà AN=AM
và AB=AC
nên NB=MC
Xét ΔNBD vuông tại N và ΔMCD vuông tại M có
NB=MC
\(\widehat{NBD}=\widehat{MCD}\)
Do đó: ΔNBD=ΔMCD
Suy ra: ND=MD
c: Ta có: ΔNBD=ΔMCD
nên BD=CD
hay D nằm trên đường trung trực của BC(1)
Ta có: AB=AC
nên A nằm trên đường trung trực của BC(2)
Ta có: EB=EC
nên E nằm trên đường trung trực của BC(3)
Từ (1), (2) và (3) suy ra A,D,E thẳng hàng
a, Xét △BAH vuông tại H và △CAH vuông tại H
Có: AH là cạnh chung
AB = AC (gt)
=> △BAH = △CAH (ch-cgv)
=> BH = CH (2 cạnh tương ứng)
Mà H nằm giữa B, C
=> H là trung điểm BC
Ta có: BH + CH = BC => BH + BH = 12 => 2BH = 12 => BH = 6 (cm)
Xét △BAH vuông tại H có: AH2 + BH2 = AB2 (định lý Pytago)
=> AH2 = AB2 - BH2
=> AH2 = 102 - 62
=> AH2 = 64
=> AH = 8 (cm)
b, Ta có: MH = MB + BH và HN = HC + CN
Mà BH = HC (cmt) ; MB = CN (gt)
=> MH = HN
Xét △MHA vuông tại H và △NHA vuông tại H
Có: AH là cạnh chung
MH = HN (cmt)
=> △MHA = △NHA (2cgv)
=> HMA = HNA (2 góc tương ứng)
Xét △AMN có: AMN = ANM (cmt) => △AMN cân tại A
c, Xét △MBE vuông tại E và △NCF vuông tại F
Có: EMB = FNC (cmt)
MB = CN (gt)
=> △MBE = △NCF (ch-gn)
=> MBE = NCF (2 góc tương ứng)
d, Vì △MHA = △NHA (cmt) => MAH = NAH (2 góc tương ứng)
=> AH là phân giác của MAN
Ta có: AE + EM = AM và AF + FN = AN
Mà EM = FN (△MBE = △NCF) ; AM = AN (△AMN cân tại A)
=> AE = AF
Xét △EAK vuông tại E và △FAK vuông tại F
Có: AK là cạnh chung
AE = AF (cmt)
=> △EAK = △FAK (ch-cgv)
=> EAK = FAK (2 góc tương ứng)
=> AK là phân giác EAF => AK là phân giác MAN
Mà AH là phân giác của MAN
=> AK ≡ AH
=> 3 điểm A, H, K thẳng hàng